2024年新高考数学复习资料专题20 数列中常见的求和问题(解析版).docx本文件免费下载 【共26页】

2024年新高考数学复习资料专题20 数列中常见的求和问题(解析版).docx
2024年新高考数学复习资料专题20 数列中常见的求和问题(解析版).docx
2024年新高考数学复习资料专题20 数列中常见的求和问题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题20数列中常见的求和问题1、(2021年全国新高考Ⅰ卷数学试题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.【答案】(1).5(2).【解析】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;故对折4次可得到如下规格:,,,,,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,设,则,两式作差得:,因此,.故答案为:;.2、(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设是公比不为1的等比数列,为,的等差中项.(1)求的公比;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若,求数列的前项和.【解析】1)设的公比为,为的等差中项,,;(2)设的前项和为,,,①,②①②得,,.3、(2023年全国甲卷数学(理))已知数列中,,设为前n项和,.(1)求的通项公式;(2)求数列的前n项和.【答案】(1)(2)【详解】(1)因为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,,即;当时,,即,当时,,所以,化简得:,当时,,即,当时都满足上式,所以.(2)因为,所以,,两式相减得,,,即,4、【2021年新高考1卷】已知数列满足,(1)记,写出,,并求数列的通项公式;(2)求的前20项和.【答案】(1);(2).【解析】解:(1)[方法一]【最优解】:显然为偶数,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,即,且,所以是以2为首项,3为公差的等差数列,于是.[方法二]:奇偶分类讨论由题意知,所以.由(为奇数)及(为偶数)可知,数列从第一项起,若为奇数,则其后一项减去该项的差为1,若为偶数,则其后一项减去该项的差为2.所以,则.[方法三]:累加法由题意知数列满足.所以,,则.所以,数列的通项公式.(2)[方法一]:奇偶分类讨论.[方法二]:分组求和小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由题意知数列满足,所以.所以数列的奇数项是以1为首项,3为公差的等差数列;同理,由知数列的偶数项是以2为首项,3为公差的等差数列.从而数列的前20项和为:题组一、利用周期性(规律性求和)1-1、(2022·江苏宿迁·高三期末)记表示不超过实数的最大整数,记,则的值为()A.5479B.5485C.5475D.5482【答案】B【解析】由题意可知,当时,;当时,;当时,;当时,,所以.故选:B1-2、(2022·湖南郴州·高三期末)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com称号.设,用表示不超过x的最大整数,则称为高斯函数.已知数列满足,且,若数列的前n项和为,则()A.4950B.4953C.4956D.4959【答案】C【解析】由,可得,根据累加法可得所以,故,当时,;当时,;当时,;当时,,因此.故选:C.题组二、裂项相消求和2-1、(2023·安徽宿州·统考一模)已知数列的前n项和为,且,则数列的前n项和______.【答案】【分析】根据给定的递推公式求出数列的通项,再利用裂项相消法求解作答.【详解】数列的前n项和为,,,当时,,两式相减得:,即,而,解得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因此数列是首项为2,公比为2的等比数列,,,所以.故答案为:.2-2、(2023·江苏泰州·统考一模)在①成等比数...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群