2024年新高考数学复习资料专题03 数列求通项(构造法、倒数法)(典型题型归类训练)(解析版).docx本文件免费下载 【共16页】

2024年新高考数学复习资料专题03 数列求通项(构造法、倒数法)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题03 数列求通项(构造法、倒数法)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题03 数列求通项(构造法、倒数法)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题03数列求通项(构造法、倒数法)(典型题型归类训练)目录一、必备秘籍........................................................1二、典型题型........................................................2题型一:构造法...................................................2题型二:倒数法...................................................5三、数列求通项(构造法、倒数法)专项训练............................8一、必备秘籍1.构造法类型1:用“待定系数法”构造等比数列形如an+1=kan+p(k,p为常数,kp≠0)的数列,可用“待定系数法”将原等式变形为an+1+m=k(an+m)(其中:m=pk−1),由此构造出新的等比数列{an+m},先求出{an+m}的通项,从而求出数列{an}的通项公式.标准模型:an+1=kan+p(k,p为常数,kp≠0)或(k,p为常数,kp≠0)类型2:用“同除法”构造等差数列(1)形如an+1=qan+p⋅qn+1(n∈N¿),可通过两边同除qn+1,将它转化为an+1qn+1=anqn+p,从而构造数列{anqn}为等差数列,先求出{anqn}的通项,便可求得{an}的通项公式.(2)形如,可通过两边同除qn+1,将它转化为,换元令:,则原式化为:,先利用构造法类型1求出,再求出{an}的通项公式.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)形如an−an+1=kan+1an(k≠0)的数列,可通过两边同除以an+1an,变形为1an+1−1an=−k的形式,从而构造出新的等差数列{1an},先求出{1an}的通项,便可求得{an}的通项公式.2.倒数法用“倒数变换法”构造等差数列类型1:形如an+1=qanpan+q(p,q为常数,pq≠0)的数列,通过两边取“倒”,变形为1an+1=1an+pq,即:1an+1−1an=pq,从而构造出新的等差数列{1an},先求出{1an}的通项,即可求得an.类型2:形如(p,q为常数,,,)的数列,通过两边取“倒”,变形为,可通过换元:,化简为:(此类型符构造法类型1:用“待定系数法”构造等比数列:形如an+1=kan+p(k,p为常数,kp≠0)的数列,可用“待定系数法”将原等式变形为an+1+m=k(an+m)(其中:m=pk−1),由此构造出新的等比数列{an+m},先求出{an+m}的通项,从而求出数列{an}的通项公式.)二、典型题型题型一:构造法例题1.(2023秋·江西宜春·高三校考开学考试)已知正项数列中,,则数列的通项()A.B.C.D.【答案】D【详解】解法一:在递推公式的两边同时除以,得①,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,则①式变为,即,所以数列是等比数列,其首项为,公比为,所以,即,所以,所以,解法二:设,则,与比较可得,所以,所以数列是首项为,公比为2的等比数列,所以,所以,故选:D例题2.(多选)(2023秋·广东深圳·高三校考阶段练习)已知数列的前n项和为,且满足,,则()A.B.C.数列为等差数列D.为等比数列【答案】ABC【详解】由得,两式相减得,,又当时,,则,故为首项是1,公差为的等差数列,即.显然A、C正确;,故B正确;由通项公式易得,,,三者不成等比数列,故D错误.故选:ABC.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例题3.(2023春·山东淄博·高二校考期中)已知数列满足,,则数列的通项公式为【答案】【详解】由得,故为等差数列,公差为1,首项为1,所以所以.故答案为:例题4.(2023·全国·高二专题练习)已知数列满足,则数列的前项和为.【答案】【详解】解:因为,所以,即,即,所以是以为首项,为公差的等差数列,所以,所以,则,令数列的前项和为,则故答案为:例题5.(2023·全国·高三专题练习)在数列中,,且,求.【答案】【详解】由,得,所以数列是以首项为,公比为的等比数列.所以,即.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,,此式也满足,故.例题6.(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)设数列的前n项和为,.(1)求证数列为等比数列,并求数列的通项公式.【答案】(1)证明见解析,【详解】(1)因为,所以当...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
免费
30下载
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
免费
0下载
2015年高考数学试卷(文)(湖北)(解析卷).pdf
2015年高考数学试卷(文)(湖北)(解析卷).pdf
免费
0下载
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
免费
0下载
高中数学高考数学10大专题技巧--专题五    函数的奇偶性(学生版).docx.doc
高中数学高考数学10大专题技巧--专题五 函数的奇偶性(学生版).docx.doc
免费
0下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2016年上海市奉贤区高考数学二模试卷(理科).doc
2016年上海市奉贤区高考数学二模试卷(理科).doc
免费
0下载
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
免费
0下载
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
免费
6下载
2016年高考数学试卷(理)(北京)(解析卷).pdf
2016年高考数学试卷(理)(北京)(解析卷).pdf
免费
0下载
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2014年高考数学真题(江苏自主命题)(解析版).doc
2014年高考数学真题(江苏自主命题)(解析版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
免费
20下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  12.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 12.docx
免费
11下载
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
免费
0下载
2002年西藏高考文科数学真题及答案.doc
2002年西藏高考文科数学真题及答案.doc
免费
1下载
2022年新高考全国I卷数学真题(解析版).docx
2022年新高考全国I卷数学真题(解析版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
2014年高考数学试卷(理)(湖南)(空白卷).pdf
2014年高考数学试卷(理)(湖南)(空白卷).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群