小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破09函数零点问题的综合应用目录1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与轴(或直线)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.2、函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、求函数的零点个数时,常用的方法有:一、直接根据零点存在定理判断;二、将整理变形成的形式,通过两函数图象的交点确定函数的零点个数;三、结合导数,求函数的单调性,从而判断函数零点个数.4、利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究.题型一:零点问题之一个零点例1.(2023·江苏南京·南京市第十三中学校考模拟预测)已知函数,.(1)求函数的单调递减区间;(2)设,.①求证:函数存在零点;②设,若函数的一个零点为.问:是否存在,使得当时,函数有且仅有一个零点,且总有恒成立?如果存在,试确定的个数;如果不存在,请说明理由.例2.(2023·广东·高三校联考阶段练习)已知函数,,在上有且仅有一个零点.(1)求的取值范围;(2)证明:若,则在上有且仅有一个零点,且.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例3.(2023·全国·高三专题练习)已知函数.(1)当时,求曲线在点处的切线方程;(2)证明:当时,有且只有一个零点;(3)若在区间各恰有一个零点,求的取值范围.变式1.(2023·广东茂名·高三统考阶段练习)已知,函数,.(1)证明:函数,都恰有一个零点;(2)设函数的零点为,的零点为,证明.题型二:零点问题之二个零点例4.(2023·海南海口·统考模拟预测)已知函数.(1)求的最小值;(2)设.(ⅰ)证明:存在两个零点,;(ⅱ)证明:的两个零点,满足.例5.(2023·甘肃天水·高三天水市第一中学校考阶段练习)已知函数.(1)讨论函数的单调性;(2)当时,,证明:函数有且仅有两个零点,两个零点互为倒数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例6.(2023·四川遂宁·高三射洪中学校考期中)已知函数.(1)若函数在处取得极值,求曲线在点处的切线方程;(2)讨论函数的单调性;(3)当时,,证明:函数有且仅有两个零点,且两个零点互为倒数.变式2.(2023·全国·高三专题练习)已知函数.(1)若.证明函数有且仅有两个零点;(2)若函数存在两个零点,证明:.变式3.(2023·湖南长沙·高三长沙一中校考阶段练习)已知函数在其定义域内有两个不同的零点.(1)求的取值范围;(2)记两个零点为,且,已知,若不等式恒成立,求的取值范围.变式4.(2023·江苏·高三专题练习)已知函数,,.(1)若,求证:(ⅰ)在的单调减区间上也单调递减;(ⅱ)在上恰有两个零点;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若,记的两个零点为,求证:.题型三:零点问题之三个零点例7.(2023·山东·...