2024年新高考数学复习资料专题06 数列求和(裂项相消法)(典型题型归类训练)(解析版).docx本文件免费下载 【共25页】

2024年新高考数学复习资料专题06 数列求和(裂项相消法)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题06 数列求和(裂项相消法)(典型题型归类训练)(解析版).docx
2024年新高考数学复习资料专题06 数列求和(裂项相消法)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06数列求和(裂项相消法)(典型题型归类训练)目录一、必备秘籍........................................................1二、典型题型........................................................2题型一:等差型...................................................2题型二:无理型...................................................5题型三:指数型...................................................8题型四:通项裂项为“”型.......................................11三、专题06数列求和(裂项相消法)专项训练..........................13一、必备秘籍常见的裂项技巧类型一:等差型①1n(n+k)=1k(1n−1n+k)特别注意k=1,1n(n+1)=1n−1n+1;k=−1,1n(n−1)=1n−1−1n②如:14n2−1=12(12n−1−12n+1)(尤其要注意不能丢前边的12)类型二:无理型①1√n+k+√n=1k(√n+k−√n)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com如:类型三:指数型①如:类型四:通项裂项为“”型如:①②本类模型典型标志在通项中含有乘以一个分式.二、典型题型题型一:等差型例题1.(2023秋·四川成都·高三校考阶段练习)已知等差数列的前n项和为(1)求数列的通项公式;(2)设,求数列的前n项和.【答案】(1)(2)【详解】(1)设等差数列的公差为,因为,所以,解得,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以数列的通项公式为(2)因为,所以.所以数列的前n项和.例题2.(2023秋·甘肃白银·高二校考阶段练习)在①,,②这三个条件中任选一个,补充在下面的问题中,并解答问题.(1)已知数列的前n项和为,______,求的通项公式;(2)数列满足,求数列的前n项和.【答案】(1)答案详见解析(2)答案详见解析【详解】(1)选条件①:,,解法一:由,,得,,当时,,所以,又也符合,所以.解法二:由,得,所以数列是常数列,所以,所以.选条件②,,时,,又,显然不符合上式,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)选条件①:,所以.因此,所以.选条件②,,当时,,又,符合,所以.例题3.(2023秋·福建宁德·高二福建省宁德第一中学校考阶段练习)已知数列满足,.(1)判断数列是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列的前10项和为361,记,数列的前项和为,求证:.【答案】(1)数列成等比数列,证明见解析(2)证明见解析【详解】(1)数列成等比数列,证明如下:根据得,;,,,即数列成等比数列.(2)由(1)得,,,故,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由,得.令,当时,单调递增,且,故,,,,,当时,,综上,知例题4.(2023秋·陕西商洛·高三陕西省山阳中学校联考阶段练习)记递增的等差数列的前n项和为,已知,且.(1)求和;(2)设,求数列的前n项和.【答案】(1),(2)【详解】(1)设的公差为d().因为,所以,由得,解得,所以,得,所以,.(2)由(1)得,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.题型二:无理型例题1.(2023·河南·校联考模拟预测)已知等差数列的前n项和为,,且,,成等比数列.(1)求数列的通项公式;(2)当数列的公差不为0时,记数列的前n项和为,求证:.【答案】(1)或(2)证明见解析【详解】(1)设数列的公差为d,由,,成等比数列,得,即,即,解得或.当时,;当时,.综上所述,或.(2)由(1)可知,当数列的公差不为0时,,,则,,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,所以.例题2.(2023秋·广东·高三河源市河源中学校联考阶段练习)在等比数列中,,且成等差数列.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.【答案】(1)(2)【详解】(1)解:设数列的公比为,因为成等差数列,所以,即,又因为,则,即,解得,所以数列的通项公式为.(2)解:由,可得,所...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
2022年全国甲卷数学(文科)高考真题文档版(答案).docx
免费
30下载
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
高中数学高考数学10大专题技巧--专题09 利用空间向量证明平行与垂直问题(教师版).docx
免费
0下载
2015年高考数学试卷(文)(湖北)(解析卷).pdf
2015年高考数学试卷(文)(湖北)(解析卷).pdf
免费
0下载
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
2020年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
免费
0下载
高中数学高考数学10大专题技巧--专题五    函数的奇偶性(学生版).docx.doc
高中数学高考数学10大专题技巧--专题五 函数的奇偶性(学生版).docx.doc
免费
0下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2016年上海市奉贤区高考数学二模试卷(理科).doc
2016年上海市奉贤区高考数学二模试卷(理科).doc
免费
0下载
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
2016年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版) (1).doc
免费
0下载
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
2023年高考数学真题(文科)(全国甲卷)(原卷版).docx
免费
6下载
2016年高考数学试卷(理)(北京)(解析卷).pdf
2016年高考数学试卷(理)(北京)(解析卷).pdf
免费
0下载
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题10+数列不等式的放缩问题(7大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2014年高考数学真题(江苏自主命题)(解析版).doc
2014年高考数学真题(江苏自主命题)(解析版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】1.4.docx
免费
20下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  12.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 12.docx
免费
11下载
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
2024年新高考数学复习资料第二章 函数与基本初等函数(测试)(原卷版).docx
免费
0下载
2002年西藏高考文科数学真题及答案.doc
2002年西藏高考文科数学真题及答案.doc
免费
1下载
2022年新高考全国I卷数学真题(解析版).docx
2022年新高考全国I卷数学真题(解析版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
2014年高考数学试卷(理)(湖南)(空白卷).pdf
2014年高考数学试卷(理)(湖南)(空白卷).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群