小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com黄金冲刺大题05导数(精选30题)1.(2024·安徽·二模)已知函数.(1)求函数在点处的切线方程;(2)求的单调区间和极值.【答案】(1);(2)递增区间为,递减区间为,极大值,极小值.【分析】(1)求出函数的导数,赋值求得,再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数的导数,利用导数求出单调区间及极值.【详解】(1)函数,求导得,则,解得,于是,,所以所求切线方程为:,即.(2)由(1)知,函数,定义域为,求导得,当或时,,当时,,因此函数在上单调递增,在上单调递减,当时,取得极大值,当时,取得极小值,所以函数的递增区间为,递减区间为,极大值,极小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2024·江苏南京·二模)已知函数,其中.(1)当时,求曲线在处的切线方程;(2)当时,若在区间上的最小值为,求a的值.【答案】(1)(2)【分析】(1)由,分别求出及,即可写出切线方程;(2)计算出,令,解得或,分类讨论的范围,得出的单调性,由在区间上的最小值为,列出方程求解即可.【详解】(1)当时,,则,,所以,所以曲线在处的切线方程为:,即.(2),令,解得或,当时,时,,则在上单调递减,所以,则,符合题意;当时,时,,则在上单调递减,时,,则在上单调递增,所以,则,不合题意;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,时,,则在上单调递减,所以,不合题意;综上,.3.(2024·浙江绍兴·模拟预测)已知,.(1)讨论的单调性.(2)若使得,求参数的取值范围.【答案】(1)当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)【分析】(1)对求导数,然后分类讨论即可;(2)直接对和分类讨论,即可得到结果.【详解】(1)由,知.当时,有,所以在上单调递减;当时,对有,对有,所以在上单调递减,在上单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)当时,由(1)的结论,知在上单调递减,在上单调递增,所以对任意的都有,故恒成立,这表明此时条件不满足;当时,设,由于,,故由零点存在定理,知一定存在,使得,故,从而,这表明此时条件满足.综上,的取值范围是.4.(2024·福建漳州·一模)已知函数,且.(1)证明:曲线在点处的切线方程过坐标原点.(2)讨论函数的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得在处的切线方程,从而得证;(2)分类讨论与,利用导数与函数的单调性即可得解.【详解】(1)因为,所以,则,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在处的切线方程为:,当时,,故,所以曲线在点处切线的方程过坐标原点.(2)由(1)得,当时,,则,故单调递减;当时,令则,当时,,单调递增;当时,,单调递减;综上:当时,在上单调递减;当时,在上单调递增,在上单调递减.5.(2024·山东·二模)已知函数.(1)当时,求的单调区间;(2)当时,,求的取值范围.【答案】(1)的减区间为,增区间为(2)【分析】(1)当时,,求导得,令,求确定的单调性与取值,从而确定的零点,得函数的单调区间;(2)求,确定函数的单调性,从而确定函数的最值,即可得的取值范围.【详解】(1)当时,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,设,则恒成立,又,所以当时,,单调递减,当时,,单调递增,所以的减区间为,增区间为;(2),设,则,所以在上单调递增,又,,所以存在,使得,即,当时,,单调递减,当时,,单调递增,当时,取得极小值,也是最小值,所以,所以,即,设,易知单调递增,且,所以,解得,综上,.6.(2024·山东·一模)已知函数.(1)当时,求函数的单调区间;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若函数有两个极值点,且,求a的取值范围.【答案】(1)...