2024年新高考数学复习资料押北京卷 第21题 数列压轴解答题 (解析版).docx本文件免费下载 【共31页】

2024年新高考数学复习资料押北京卷 第21题 数列压轴解答题 (解析版).docx
2024年新高考数学复习资料押北京卷 第21题 数列压轴解答题 (解析版).docx
2024年新高考数学复习资料押北京卷 第21题 数列压轴解答题 (解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押北京卷21题数列压轴解答题核心考点考情统计考向预测备考策略新定义数列2023·北京卷T21预测2024年新高考命题方向将继续新定义数列为背景开命题.所谓“新定义”型问题,主要是指在问题中定义了高中数学中没有学过的一些概念、新运算、新符号,要求同学们读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.新定义数列2022·北京卷T21新定义数列2021·北京卷T211.(2023·北京卷T21)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;(2)若为连续可表数列,求证:k的最小值为4;(3)若为连续可表数列,且,求证:.【解】(1),,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.(2)若,设为,则至多,6个数字,没有个,矛盾;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,数列,满足,,,,,,,,.(3),若最多有种,若,最多有种,所以最多有种,若,则至多可表个数,矛盾,从而若,则,至多可表个数,而,所以其中有负的,从而可表1~20及那个负数(恰21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为,则所有数之和,,,再考虑排序,排序中不能有和相同,否则不足个,(仅一种方式),与2相邻,若不在两端,则形式,若,则(有2种结果相同,方式矛盾),,同理,故在一端,不妨为形式,若,则(有2种结果相同,矛盾),同理不行,,则(有2种结果相同,矛盾),从而,由于,由表法唯一知3,4不相邻,、故只能,①或,②这2种情形,对①:,矛盾,对②:,也矛盾,综上,当时,数列满足题意,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2022·北京卷T21)已知数列的项数均为m,且的前n项和分别为,并规定.对于,定义,其中,表示数集M中最大的数.(1)若,求的值;(2)若,且,求;(3)证明:存在,满足使得.【解】(1)由题意可知:,当时,则,故;当时,则,故;当时,则故;当时,则,故;综上所述:,,,.(2)由题意可知:,且,因为,且,则对任意恒成立,所以,又因为,则,即,可得,反证:假设满足的最小正整数为,当时,则;当时,则,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又因为,则,假设不成立,故,即数列是以首项为1,公差为1的等差数列,所以.(3)因为均为正整数,则均为递增数列,(ⅰ)若,则可取,满足使得;(ⅱ)若,则,构建,由题意可得:,且为整数,反证,假设存在正整数,使得,则,可得,这与相矛盾,故对任意,均有.①若存在正整数,使得,即,可取,满足,使得;②若不存在正整数,使得,因为,且,所以必存在,使得,即,可得,可取,满足,使得;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(ⅲ)若,定义,则,构建,由题意可得:,且为整数,反证,假设存在正整数,使得,则,可得,这与相矛盾,故对任意,均有.①若存在正整数,使得,即,可取,即满足,使得;②若不存在正整数,使得,因为,且,所以必存在,使得,即,可得,可取,满足,使得.综上所述:存在使得.3.(2021·北京卷T21)设p为实数.若无穷数列满足如下三个性质,则称为数列:①,且;②;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com③,.(1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由;(2)若数列是数列,求;(3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理由.【解】(1)因为所以,因为所以所以数列,不可能是数列.(2)性质①,由性质③,因此或,或,若,由性质②可知,即或,矛盾;若,由有,矛盾.因此只能是.又因为或,所以或.若,则,不满足,舍去.当,则前四项为:0,0,0,1,下面用数学归纳法证明:小学、初中、高中各种试卷真题知识归...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群