2024年新高考数学复习资料专题02 函数的值域(含2021-2023高考真题)(解析版).docx本文件免费下载 【共23页】

2024年新高考数学复习资料专题02 函数的值域(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题02 函数的值域(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题02 函数的值域(含2021-2023高考真题)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题02函数的值域考点一常见函数值域一、单选题1.下列函数中值域为的是()A.y=|x-1|B.C.D.【解析】对于A,函数,值域为,故选项A正确;对于B,函数,值域为,故选项B错误;对于C,函数,值域为,故选项C错误;对于D,函数,值域为,故选项D错误,故选:A.2.当时,则函数的值域为()A.B.C.D.【解析】令,因为,所以,当时,函数单调递减,故,当时,即,所以,所以函数的值域为:.故选:C.3.已知函数,则的最小值是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.0C.1D.2【解析】当时,函数在上单调递减,所以当时,函数有最小值为,当时,函数在上单调递增,所以,综上,当时,函数有最小值为1.故选:C4.函数的值域为()A.B.C.D.【解析】令,由,则,所以,所以,又,所以函数的值域为.故选:B5.已知函数,则的值域为()A.B.C.D.【解析】,,故,故函数值域为.故选:B二、多选题6.下列函数中,最小值为2的函数是()A.B.C.D.【解析】对于选项A,方法1:当时,,所以2不是的最小值,故A项错误;方法2:因为在,上单调递增,所以其值域为R,故A项错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于选项B,因为定义域为R,令,则,所以,又因为,当且仅当时取等号,故的最小值为2,所以值域为,故B项正确;对于选项C,因为,所以,所以值域为,故C项错误;对于选项D,因为对称轴为,其在上单调递减,在上单调递增,所以当时,,所以值域为,故D项正确.故选:BD.三、填空题7.已知,函数的值域为______________【解析】因为,所以,又,所以当时,单调递减,,所以函数的值域为.8.函数的值域为______.【解析】令,则,所以.故答案为:.四、解答题9.求下列函数的值域.(1);(2);(3),.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】(1)设,则,所以,根据二次函数的图像和性质,函数的值域为.(2)函数的定义域为,,所以函数的值域为.(3)因为函数的对称轴为,所以函数在单调递减,单调递增,所以函数的值域为.10.求下列函数的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9).【解析】(1)因为,故的值域为;(2)令,则,而,则,故,即的值域为;(3),因为,故,所以的值域为;(4)令,则,当时,取到最大值5,无最小值,故的值域为;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(5)因为,令,故,由于,故,即函数的值域为;(6),当时,;当时,;当时,,故的值域为;(7)因为恒成立,故,则由可得,当时,,适合题意;当时,由于,故恒有实数根,故,解得且,故的值域为;(8),因为,故,当且仅当,即时等号成立,故,即函数值域为;(9)由可得,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由三角函数辅助角公式可得,(为辅助角),则,解得,故函数的值域为.考点二复杂函数值域一、单选题1.函数的值域是()A.B.C.D.【解析】由可得,当时,故,当且仅当时等号成立,而恒成立,故,故的值域为,故选:C二、填空题2.函数的最大值与最小值分别为M和m,则的值为__________.【解析】依题意可得函数的定义域为,即,则,所以,所以,,即.3.已知函数为偶函数,则函数的值域为___________.【解析】函数()是偶函数,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,易得,设,则,当且仅当即时,等号成立,所以,所以函数的值域为.4.求函数的值域为_________.【解析】令,则,容易看出,该函数转化为一个开口向下的二次函数,对称轴为,,所以该函数在时取到最大值,当时,函数取得最小值,所以函数值域为.5.函数的值域为__.【解析】令t=sinx,t∈[-1,1],所以原式可化为:, ﹣1≤t≤1,∴2≤t+3≤4,∴,则,∴,函数的值域为.6.函数的值域为______.【解析】由题设,所以所求值域化为求轴上点到与距离差的范围,如下图示,小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群