小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押上海高考18题函数、数列、不等式、解三角形考点4年考题考情分析函数2023年函数奇偶性的性质与判断数列2022年、2022年数列的极限、等差数列与等比数列的综合不等式2022年不等式恒成立的问题解三角形2021年、2023年正弦定理、解三角形一.函数奇偶性的性质与判断(共1小题)1.(2023•上海)已知,,函数.(1)若,求函数的定义域,并判断是否存在使得是奇函数,说明理由;(2)若函数过点,且函数与轴负半轴有两个不同交点,求此时的值和的取值范围.【分析】(1)时,求出函数的解析式,根据函数的定义域和奇偶性进行求解判断即可.(2)根据函数过点,求出的值,然后根据与轴负半轴有两个不同交点,转化为一元二次方程根的分布进行求解即可.【解答】解:(1)若,则,要使函数有意义,则,即的定义域为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com是奇函数,是偶函数,函数为非奇非偶函数,不可能是奇函数,故不存在实数,使得是奇函数.(2)若函数过点,则(1),得,得,此时,若数与轴负半轴有两个不同交点,即,得,当时,有两个不同的交点,设,则,得,得,即,若即是方程的根,则,即,得或,则实数的取值范围是且且,即,,.【点评】本题主要考查函数奇偶性的判断,以及函数与方程的应用,根据条件建立方程,转化为一元二次方程根的分布是解决本题的关键,是中档题.二.数列的极限(共1小题)2.(2022•上海)已知在数列中,,其前项和为.(1)若是等比数列,,求;(2)若是等差数列,,求其公差的取值范围.【分析】(1)由已知求得等比数列的公比,再求出前项和,求极限得答案;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)求出等差数列的前项和,代入,对分类分析得答案.【解答】解:(1)在等比数列中,,,则,公比,则,;(2)若是等差数列,则,即,当时,;当时,恒成立,,,.综上所述,,.【点评】本题考查等差数列与等比数列前项和,考查数列极限的求法,考查数列的函数特性及应用,是中档题.三.等差数列与等比数列的综合(共1小题)3.(2020•上海)已知各项均为正数的数列,其前项和为,.(1)若数列为等差数列,,求数列的通项公式;(2)若数列为等比数列,,求满足时的最小值.【分析】(1)设等差数列的公差为,运用等差数列的求和公式,解方程可得,进而得到所求通项公式;(2)设等比数列的公比为,由等比数列的通项公式可得,再由等比数列的求和公式,解不等式可得的最小值.【解答】解:(1)数列为公差为的等差数列,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com可得,解得,则;(2)数列为公比为的等比数列,,,可得,即,则,,,即为,即,可得,即的最小值为7.【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.四.不等式恒成立的问题(共1小题)4.(2022•上海).(1)若将函数图像向下移后,图像经过,,求实数,的值.(2)若且,求解不等式.【分析】(1)写出函数图像下移个单位后的解析式,把点的坐标代入求解即可得出和的值.(2)不等式化为,写出等价不等式组,求出解集即可.【解答】解:(1)因为函数,将函数图像向下移后,得的图像,由函数图像经过点和,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,解得,.(2)且时,不等式可化为,等价于,解得,当时,,,解不等式得,当时,,,解不等式得;综上知,时,不等式的解集是,,时,不等式的解集是,.【点评】本题考查了函数的性质与应用问题,也考查了含有字母系数的不等式解法与应用问题,是中档题.五.正弦定理(共2小题)5.(2021•上海)在中,已知,.(1)若,求.(2)若,求.【分析】(1)由余弦定理求得,从而求得面积;(2)由正、余弦定理求得、值,从而求得周长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解答】解:(1)由...