2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx本文件免费下载 【共37页】

2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题07函数的奇偶性真题再现一、单选题1.(2023·全国·统考高考真题)若为偶函数,则().A.B.0C.D.1【解析】因为为偶函数,则,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.2.(2023·全国·统考高考真题)已知是偶函数,则()A.B.C.1D.2【解析】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.3.(2023·天津·统考高考真题)函数的图象如下图所示,则的解析式可能为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解析】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D4.(2022·天津·统考高考真题)函数的图像为()A.B.C.D.【解析】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.5.(2022·全国·统考高考真题)已知函数的定义域为R,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则()A.B.C.0D.1【解析】[方法一]:赋值加性质因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.因为,,,,,所以一个周期内的.由于22除以6余4,所以.故选:A.[方法二]:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com且,所以,由于22除以6余4,所以.故选:A.6.(2021·全国·统考高考真题)已知函数的定义域为,为偶函数,为奇函数,则()A.B.C.D.【解析】因为函数为偶函数,则,可得,因为函数为奇函数,则,所以,,所以,,即,故函数是以为周期的周期函数,因为函数为奇函数,则,故,其它三个选项未知.故选:B.7.(2021·全国·高考真题)设是定义域为R的奇函数,且.若,则()A.B.C.D.【解析】由题意可得:,而,故.故选:C.8.(2021·全国·统考高考真题)设函数的定义域为R,为奇函数,为偶函数,当时,.若,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解析】[方法一]:因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路一:从定义入手.,,,所以.[方法二]:因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路二:从周期性入手,由两个对称性可知,函数的周期.所以.故选:D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.(2021·全国·统考高考真题)设函数,则下列函数中为奇函数的是()A.B.C.D.【解析】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选:B二、多选题10.(2023·全国·统考高考真题)已知函数的定义域为,,则().A.B.C.是偶函数D.为的极小值点【解析】方法一:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,不妨令,显然符合题设条件,此时无极值,故错误.方法二:因为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,当时,对两边同时除以,得到,故可以设,则,当肘,,则,令,得;令,得;故在上单调递减,在上单调递增,因为为偶函数,所以在上单调递增,在上单调递减,显然,此时是的极大值,故D错误.故选:.11.(2022·全国·统考高考真题)已知函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】详解答案.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】详解答案.docx
免费
21下载
2025版新高考版 数学考点清单+题型清单01专题一集合与常用逻辑用语01_1.2  常用逻辑用语讲解册.pdf
2025版新高考版 数学考点清单+题型清单01专题一集合与常用逻辑用语01_1.2 常用逻辑用语讲解册.pdf
免费
26下载
高中数学高考数学10大专题技巧--专题12 导数中隐零点的应用(教师版).docx
高中数学高考数学10大专题技巧--专题12 导数中隐零点的应用(教师版).docx
免费
0下载
2001年上海高考理科数学真题及答案.doc
2001年上海高考理科数学真题及答案.doc
免费
14下载
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
免费
0下载
2012年高考数学试卷(理)(浙江)(空白卷).pdf
2012年高考数学试卷(理)(浙江)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(原卷版).docx
免费
0下载
2012年高考数学真题(文科)(大纲版)(解析版).doc
2012年高考数学真题(文科)(大纲版)(解析版).doc
免费
27下载
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
免费
0下载
2014年高考数学试卷(文)(天津)(空白卷).pdf
2014年高考数学试卷(文)(天津)(空白卷).pdf
免费
0下载
2017年高考数学试卷(理)(新课标Ⅱ)(空白卷) (11).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(空白卷) (11).pdf
免费
0下载
2025年新高考数学复习资料专题11 数列的极限(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题11 数列的极限(典型题型归类训练)(原卷版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练7.docx
2022·微专题·小练习·数学·理科【统考版】专练7.docx
免费
4下载
2013年高考数学试卷(江苏)(空白卷).doc
2013年高考数学试卷(江苏)(空白卷).doc
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(十五).docx
免费
28下载
2016年高考数学试卷(理)(上海)(解析卷).pdf
2016年高考数学试卷(理)(上海)(解析卷).pdf
免费
0下载
2022年新高考全国I卷数学真题.docx
2022年新高考全国I卷数学真题.docx
免费
0下载
2015年辽宁高考文科数学真题及答案.doc
2015年辽宁高考文科数学真题及答案.doc
免费
5下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料