2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx本文件免费下载 【共37页】

2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题07 函数的奇偶性(含2021-2023高考真题)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题07函数的奇偶性真题再现一、单选题1.(2023·全国·统考高考真题)若为偶函数,则().A.B.0C.D.1【解析】因为为偶函数,则,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.2.(2023·全国·统考高考真题)已知是偶函数,则()A.B.C.1D.2【解析】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.3.(2023·天津·统考高考真题)函数的图象如下图所示,则的解析式可能为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解析】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D4.(2022·天津·统考高考真题)函数的图像为()A.B.C.D.【解析】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.5.(2022·全国·统考高考真题)已知函数的定义域为R,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则()A.B.C.0D.1【解析】[方法一]:赋值加性质因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.因为,,,,,所以一个周期内的.由于22除以6余4,所以.故选:A.[方法二]:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com且,所以,由于22除以6余4,所以.故选:A.6.(2021·全国·统考高考真题)已知函数的定义域为,为偶函数,为奇函数,则()A.B.C.D.【解析】因为函数为偶函数,则,可得,因为函数为奇函数,则,所以,,所以,,即,故函数是以为周期的周期函数,因为函数为奇函数,则,故,其它三个选项未知.故选:B.7.(2021·全国·高考真题)设是定义域为R的奇函数,且.若,则()A.B.C.D.【解析】由题意可得:,而,故.故选:C.8.(2021·全国·统考高考真题)设函数的定义域为R,为奇函数,为偶函数,当时,.若,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解析】[方法一]:因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路一:从定义入手.,,,所以.[方法二]:因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路二:从周期性入手,由两个对称性可知,函数的周期.所以.故选:D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.(2021·全国·统考高考真题)设函数,则下列函数中为奇函数的是()A.B.C.D.【解析】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选:B二、多选题10.(2023·全国·统考高考真题)已知函数的定义域为,,则().A.B.C.是偶函数D.为的极小值点【解析】方法一:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,不妨令,显然符合题设条件,此时无极值,故错误.方法二:因为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,当时,对两边同时除以,得到,故可以设,则,当肘,,则,令,得;令,得;故在上单调递减,在上单调递增,因为为偶函数,所以在上单调递增,在上单调递减,显然,此时是的极大值,故D错误.故选:.11.(2022·全国·统考高考真题)已知函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1991年高考数学真题(文科)(安徽自主命题).doc
1991年高考数学真题(文科)(安徽自主命题).doc
免费
28下载
2005年贵州高考理科数学真题及答案.doc
2005年贵州高考理科数学真题及答案.doc
免费
9下载
精品解析:2022年北京市高考数学试题(解析版).docx
精品解析:2022年北京市高考数学试题(解析版).docx
免费
12下载
2009年高考真题数学【理】(山东卷)(原卷版).doc
2009年高考真题数学【理】(山东卷)(原卷版).doc
免费
2下载
2017年江苏省高考数学试卷往年高考真题.doc
2017年江苏省高考数学试卷往年高考真题.doc
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(空白卷) (7).pdf
2023年高考数学试卷(文)(全国乙卷)(空白卷) (7).pdf
免费
0下载
2008年高考数学试卷(文)(全国卷Ⅱ)(解析卷) (6).pdf
2008年高考数学试卷(文)(全国卷Ⅱ)(解析卷) (6).pdf
免费
0下载
精品解析:2024届江苏省南通市徐州市高三2月大联考模拟预测数学试题(解析版).docx
精品解析:2024届江苏省南通市徐州市高三2月大联考模拟预测数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料专题03 函数的奇偶性、周期性、对称性(原卷版).docx
2024年新高考数学复习资料专题03 函数的奇偶性、周期性、对称性(原卷版).docx
免费
0下载
1994年高考数学真题(文科)(陕西自主命题).doc
1994年高考数学真题(文科)(陕西自主命题).doc
免费
9下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十七).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十七).docx
免费
6下载
高考复习专项练习一轮数学课时规范练51 随机抽样、用样本估计总体.docx
高考复习专项练习一轮数学课时规范练51 随机抽样、用样本估计总体.docx
免费
23下载
精品解析:2022年6月浙江省慈溪市高二学考模拟数学试题(解析版).docx
精品解析:2022年6月浙江省慈溪市高二学考模拟数学试题(解析版).docx
免费
28下载
2009年高考数学试卷(理)(上海)(空白卷).doc
2009年高考数学试卷(理)(上海)(空白卷).doc
免费
0下载
2022届江苏省盐城市阜宁县东沟中学高三下学期第一次综合训练数学试题(原卷版).docx
2022届江苏省盐城市阜宁县东沟中学高三下学期第一次综合训练数学试题(原卷版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 5.docx
高中2024版《微专题》·数学·新高考专练 5.docx
免费
0下载
高中2022·微专题·小练习·数学·文科【统考版】专练12.docx
高中2022·微专题·小练习·数学·文科【统考版】专练12.docx
免费
0下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2025年新高考数学复习资料重难点突破01 抽象函数模型归纳总结(八大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破01 抽象函数模型归纳总结(八大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料2025高考总复习专项复习--概率专题十三(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--概率专题十三(含解析).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群