2024年新高考数学复习资料押上海高考20题(圆锥曲线)解析版.docx本文件免费下载 【共77页】

2024年新高考数学复习资料押上海高考20题(圆锥曲线)解析版.docx
2024年新高考数学复习资料押上海高考20题(圆锥曲线)解析版.docx
2024年新高考数学复习资料押上海高考20题(圆锥曲线)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押上海高考20题圆锥曲线考点4年考题考情分析圆锥曲线2020~2023年、2024年春考直线与椭圆的综合、直线与抛物线的综合、直线与双曲线的综合、直线与圆锥曲线的综合一.直线与椭圆的综合(共2小题)1.(2023•上海)已知椭圆且.(1)若,求椭圆的离心率;(2)设、为椭圆的左右顶点,椭圆上一点的纵坐标为1,且,求实数的值;(3)过椭圆上一点作斜率为的直线,若直线与双曲线有且仅有一个公共点,求实数的取值范围.【分析】(1)由题意可得,,,可求离心率;(2)由已知得,,设,由已知可得,,求解即可;(3)设直线,与椭圆方程联立可得,与双曲线方程联立可得,可求的取值范围.【解答】解:(1)若,则,,,,;(2)由已知得,,设,,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,,,,,代入求得;(3)设直线,联立椭圆可得,整理得,由△,,联立双曲线可得,整理得,由△,,,,又,,,综上所述:,.【点评】本题考查离心率的求法,考查椭圆与双曲线的几何性质,直线与椭圆的综合,属中档题.2.(2022•上海)已知椭圆,、两点分别为的左顶点、下顶点,、两点均在直线上,且在第一象限.(1)设是椭圆的右焦点,且,求的标准方程;(2)若、两点纵坐标分别为2、1,请判断直线与直线的交点是否在椭圆上,并说明理由;(3)设直线、分别交椭圆于点、点,若、关于原点对称,求的最小值.【分析】(1)根据条件可得,解出,利用,求得,即可求得答案;(2)分别表示出此时直线、直线的方程,求出其交点,验证即可;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)设,,表示出直线、直线方程,解出、坐标,表示出,再利用基本不等式即可求出答案.【解答】解:(1)由题可得,,因为,所以,解得,所以,故的标准方程为;(2)直线与直线的交点在椭圆上,由题可得此时,,,,则直线,直线,交点为,,满足,故直线与直线的交点在椭圆上;(3),,则直线,所以,,,则直线,所以,所以,设,则,因为,所以,则,即的最小值为6.【点评】本题考查直线与椭圆的综合,涉及椭圆方程的求解,直线交点求解,基本不等式的应用,属于中档题.二.直线与抛物线的综合(共2小题)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2023•上海)已知抛物线,在上有一点位于第一象限,设的纵坐标为.(1)若到抛物线准线的距离为3,求的值;(2)当时,若轴上存在一点,使的中点在抛物线上,求到直线的距离;(3)直线,是第一象限内上异于的动点,在直线上的投影为点,直线与直线的交点为.若在的位置变化过程中,恒成立,求的取值范围.【分析】(1)根据题意可得点的横坐标为2,将其代入抛物线的方程,即可求得的值;(2)易知,设,由的中点在抛物线上,可得的值,进而得到直线的方程,再由点到直线的距离公式得解;(3)设,表示出直线的方程,进一步表示出点的坐标,再根据恒成立,结合基本不等式即可得到的范围.【解答】解:(1)抛物线的准线为,由于到抛物线准线的距离为3,则点的横坐标为2,则,解得;(2)当时,点的横坐标为,则,设,则的中点为,由题意可得,解得,所以,则,由点斜式可得,直线的方程为,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以原点到直线的距离为;(3)如图,设,则,故直线的方程为,令,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则,解得,又当时,,当且仅当时等号成立,而,即当时,也符合题意.故实数的取值范围为,.【点评】本题考查抛物线的定义及其性质,考查直线与抛物线的综合运用,考查运算求解能力,属于中档小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题.4.(2020•上海)已知抛物线上的动点,,过分别作两条直线交抛物线于、两点,交直线于、两点.(1)若点纵坐标为,求与焦点的距离;(2)若,,,求证:为常数;(3)是否存在,使得且为常数?若...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群