2024年新高考数学复习资料专题15 函数零点问题(含2021-2023高考真题)(解析版).docx本文件免费下载 【共26页】

2024年新高考数学复习资料专题15 函数零点问题(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题15 函数零点问题(含2021-2023高考真题)(解析版).docx
2024年新高考数学复习资料专题15 函数零点问题(含2021-2023高考真题)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题15函数零点问题真题呈现1.(2021·天津·统考高考真题)设,函数,若在区间内恰有6个零点,则a的取值范围是()A.B.C.D.【解析】最多有2个根,所以至少有4个根,由可得,由可得,(1)时,当时,有4个零点,即;当,有5个零点,即;当,有6个零点,即;(2)当时,,,当时,,无零点;当时,,有1个零点;当时,令,则,此时有2个零点;所以若时,有1个零点.综上,要使在区间内恰有6个零点,则应满足小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com或或,则可解得a的取值范围是.2.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是________.【解析】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.3.(2023·天津·统考高考真题)若函数有且仅有两个零点,则的取值范围为___.【解析】(1)当时,,即,若时,,此时成立;若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)当时,,即,若时,,显然不成立;若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.4.(2022·天津·统考高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为______.【解析】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2021·北京·统考高考真题)已知函数,给出下列四个结论:①若,恰有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是_______.【解析】对于①,当时,由,可得或,①正确;对于②,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使得只有一个零点,②正确;对于③,当直线过点时,,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线与曲线有一个交点,所以,,此不等式无解,因此,不存在,使得函数有三个零点,③错误;对于④,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,④正确.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案为:①②④.6.(2022·北京·统考高考真题)若函数的一个零点为,则_____;__.【解析】 ,∴,∴,故答案为:1,考点一函数零点的定义一、单选题1.函数的零点为()A.2,3B.2C.D.【解析】由,得,即或,解得或,所以函数的零点为2,3.故选:A2.若是二次函数的两个零点,则的值是()A.3B.15C.D.【解析】由题意知是二次函数的两个零点,故是的两个根,则,且,则且,故,故选:B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.关于的函数的两个零点为,且,则=()A.B.C.D.【解析】依题意得是方程的两不等实根,所以,,,所以,即,又,所以.故选:A4.若向量,,则函数的零点为()A.B.C.D.,【解析】由题意可得,,令,可得或,所以函数的零点是.故选:D5.函数有且只有一个零点...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群