2024年新高考数学复习资料押天津卷第20题教师版.docx本文件免费下载 【共56页】

2024年新高考数学复习资料押天津卷第20题教师版.docx
2024年新高考数学复习资料押天津卷第20题教师版.docx
2024年新高考数学复习资料押天津卷第20题教师版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押天津卷20题导数大题考点2年考题考情分析导数大题2023年天津卷第20题2022年天津卷第20题导数作为高考的压轴大题,难度一直都是较大的,近两年高考在导数的第一问考察求导的基本运算,以及切线方程,第一问的难度较小,大多考生可以解决,后面的问题大多是证明的形式来考察,整体难度较大,涉及参数范围,极值点,最值,零点问题的研究,不等式的证明,函数的构造等。难度很大,考生需要对导数知识掌握透彻的同时了解一些高等数学的内容这样处理导数难题会有些帮助。题型一导数综合20.(16分)(2023•天津)已知函数.(Ⅰ)求曲线在处的切线斜率;(Ⅱ)当时,求证:;(Ⅲ)证明:.【答案】(Ⅰ);(Ⅱ)证明过程见解答;(Ⅲ)证明过程见解答.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】(Ⅰ)对函数求导,求出(2)的值即可得解;(Ⅱ)令,先利用导数求出的单调性,由此容易得证;(Ⅲ)设数列的前项和,可得当时,,由此可知,证得不等式右边;再证明对任意的,,令,利用导数可知,由此可得,再求得,,由此可得证不等式左边,进而得证.【解答】解:(Ⅰ)对函数求导,可得,则曲线在处的切线斜率为(2);(Ⅱ)证明:当时,,即,即,而在上单调递增,因此,原不等式得证;(Ⅲ)证明:设数列的前项和,则;当时,,由(2),,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故,不等式右边得证;要证,只需证:对任意的,,令,则,当时,,函数在上单调递减,则,即,则,因此当时,,当时,累加得,又,,故,即得证.20.(15分)(2022•天津)已知,,函数,.(1)求函数在,处的切线方程;(2)若和有公共点.(ⅰ)当时,求的取值范围;(ⅱ)求证:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1);(2)(ⅰ),;(ⅱ)证明见解答.【分析】(1)利用导数的几何意义及直线的斜截式方程即可求解;(2)(ⅰ)将和有公共点转化为在上有解,再构造函数,,接着利用导数求出的值域,从而得的取值范围;(ⅱ)令交点的横坐标为,则,再利用柯西不等式及结论:时,,,放缩即可证明.【解答】解:(1),,,,函数在处的切线方程为;(2)(ⅰ),,又和有公共点,方程有解,即有解,显然,在上有解,设,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,;当,时,,在上单调递减,在,上单调递增,,且当时,;当时,,,,的范围为,;(ⅱ)证明:令交点的横坐标为,则,由柯西不等式可得,又易证时,,,,,故.一、导数的应用1.在点的切线方程切线方程的计算:函数在点处的切线方程为,抓住关键.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.过点的切线方程设切点为,则斜率,过切点的切线方程为:,又因为切线方程过点,所以然后解出的值.(有几个值,就有几条切线)3.函数的极值函数在点附近有定义,如果对附近的所有点都有,则称是函数的一个极大值,记作.如果对附近的所有点都有,则称是函数的一个极小值,记作.极大值与极小值统称为极值,称为极值点.求可导函数极值的一般步骤(1)先确定函数的定义域;(2)求导数;(3)求方程的根;(4)检验在方程的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数在这个根处取得极小值.注①可导函数在点处取得极值的充要条件是:是导函数的变号零点,即,且在左侧与右侧,的符号导号.②是为极值点的既不充分也不必要条件,如,,但不是极值点.另外,极值点也可以是不可导的,如函数,在极小值点是不可导的,于是有如下结论:为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com可导函数的极值点;但为的极值点.4.函数的最值函数最大值为极大值与靠近极小值的端点之间的最大者;函数最小值为极小值与靠近极大值的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年北京市高考数学试卷(文科)往年高考真题.doc
2015年北京市高考数学试卷(文科)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料微专题15 三角中的最值、范围问题.docx
2025年新高考数学复习资料微专题15 三角中的最值、范围问题.docx
免费
0下载
2025年新高考数学复习资料2025版新教材高考数学第二轮复习专题练--6.5 数列的综合(含答案).docx
2025年新高考数学复习资料2025版新教材高考数学第二轮复习专题练--6.5 数列的综合(含答案).docx
免费
0下载
2024年新高考数学复习资料专题16 抛物线的焦点弦、中点弦、弦长问题(解析版).docx
2024年新高考数学复习资料专题16 抛物线的焦点弦、中点弦、弦长问题(解析版).docx
免费
0下载
第01讲 计数原理(三大题型)(课件).pptx
第01讲 计数原理(三大题型)(课件).pptx
免费
0下载
2024年新高考数学复习资料专题4.2 三角函数的图象与性质【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题4.2 三角函数的图象与性质【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
2023年北京卷高考真题数学试题 Word版含解析.doc
2023年北京卷高考真题数学试题 Word版含解析.doc
免费
16下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】素养训练(五).docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】素养训练(五).docx
免费
30下载
2025年新高考数学复习资料第01讲 导数的概念及其意义、导数的运算(十二大题型)(练习)(原卷版)(1).docx
2025年新高考数学复习资料第01讲 导数的概念及其意义、导数的运算(十二大题型)(练习)(原卷版)(1).docx
免费
0下载
高中数学高考数学10大专题技巧--专题17 单变量不含参不等式证明方法之虚设零点(教师版).docx
高中数学高考数学10大专题技巧--专题17 单变量不含参不等式证明方法之虚设零点(教师版).docx
免费
0下载
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
免费
0下载
2023年高考数学真题(新高考Ⅰ)(解析版).docx
2023年高考数学真题(新高考Ⅰ)(解析版).docx
免费
1下载
2013年浙江省高考数学【理】(原卷版).doc
2013年浙江省高考数学【理】(原卷版).doc
免费
18下载
7. 衡水中学高考积累与改错_高三数学(第3本)_126页.pdf
7. 衡水中学高考积累与改错_高三数学(第3本)_126页.pdf
免费
18下载
2012年上海市黄浦区高考数学一模试卷(理科).doc
2012年上海市黄浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学高考数学10大专题技巧--专题30  证明数量关系型问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题30 证明数量关系型问题(学生版).docx.doc
免费
0下载
2024年新高考数学复习资料专题14 双曲线中的向量问题(解析版).docx
2024年新高考数学复习资料专题14 双曲线中的向量问题(解析版).docx
免费
0下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
精品解析:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷(解析版).docx
精品解析:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷(解析版).docx
免费
0下载
高考数学专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群