2024年新高考数学复习资料押天津卷第20题教师版.docx本文件免费下载 【共56页】

2024年新高考数学复习资料押天津卷第20题教师版.docx
2024年新高考数学复习资料押天津卷第20题教师版.docx
2024年新高考数学复习资料押天津卷第20题教师版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押天津卷20题导数大题考点2年考题考情分析导数大题2023年天津卷第20题2022年天津卷第20题导数作为高考的压轴大题,难度一直都是较大的,近两年高考在导数的第一问考察求导的基本运算,以及切线方程,第一问的难度较小,大多考生可以解决,后面的问题大多是证明的形式来考察,整体难度较大,涉及参数范围,极值点,最值,零点问题的研究,不等式的证明,函数的构造等。难度很大,考生需要对导数知识掌握透彻的同时了解一些高等数学的内容这样处理导数难题会有些帮助。题型一导数综合20.(16分)(2023•天津)已知函数.(Ⅰ)求曲线在处的切线斜率;(Ⅱ)当时,求证:;(Ⅲ)证明:.【答案】(Ⅰ);(Ⅱ)证明过程见解答;(Ⅲ)证明过程见解答.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】(Ⅰ)对函数求导,求出(2)的值即可得解;(Ⅱ)令,先利用导数求出的单调性,由此容易得证;(Ⅲ)设数列的前项和,可得当时,,由此可知,证得不等式右边;再证明对任意的,,令,利用导数可知,由此可得,再求得,,由此可得证不等式左边,进而得证.【解答】解:(Ⅰ)对函数求导,可得,则曲线在处的切线斜率为(2);(Ⅱ)证明:当时,,即,即,而在上单调递增,因此,原不等式得证;(Ⅲ)证明:设数列的前项和,则;当时,,由(2),,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故,不等式右边得证;要证,只需证:对任意的,,令,则,当时,,函数在上单调递减,则,即,则,因此当时,,当时,累加得,又,,故,即得证.20.(15分)(2022•天津)已知,,函数,.(1)求函数在,处的切线方程;(2)若和有公共点.(ⅰ)当时,求的取值范围;(ⅱ)求证:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1);(2)(ⅰ),;(ⅱ)证明见解答.【分析】(1)利用导数的几何意义及直线的斜截式方程即可求解;(2)(ⅰ)将和有公共点转化为在上有解,再构造函数,,接着利用导数求出的值域,从而得的取值范围;(ⅱ)令交点的横坐标为,则,再利用柯西不等式及结论:时,,,放缩即可证明.【解答】解:(1),,,,函数在处的切线方程为;(2)(ⅰ),,又和有公共点,方程有解,即有解,显然,在上有解,设,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,;当,时,,在上单调递减,在,上单调递增,,且当时,;当时,,,,的范围为,;(ⅱ)证明:令交点的横坐标为,则,由柯西不等式可得,又易证时,,,,,故.一、导数的应用1.在点的切线方程切线方程的计算:函数在点处的切线方程为,抓住关键.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.过点的切线方程设切点为,则斜率,过切点的切线方程为:,又因为切线方程过点,所以然后解出的值.(有几个值,就有几条切线)3.函数的极值函数在点附近有定义,如果对附近的所有点都有,则称是函数的一个极大值,记作.如果对附近的所有点都有,则称是函数的一个极小值,记作.极大值与极小值统称为极值,称为极值点.求可导函数极值的一般步骤(1)先确定函数的定义域;(2)求导数;(3)求方程的根;(4)检验在方程的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数在这个根处取得极小值.注①可导函数在点处取得极值的充要条件是:是导函数的变号零点,即,且在左侧与右侧,的符号导号.②是为极值点的既不充分也不必要条件,如,,但不是极值点.另外,极值点也可以是不可导的,如函数,在极小值点是不可导的,于是有如下结论:为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com可导函数的极值点;但为的极值点.4.函数的最值函数最大值为极大值与靠近极小值的端点之间的最大者;函数最小值为极小值与靠近极大值的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
免费
0下载
2008年高考数学试卷(理)(陕西)(解析卷).doc
2008年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练37.docx
高中2024版考评特训卷·数学【新教材】考点练37.docx
免费
0下载
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(五十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(五十五).docx
免费
16下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
5下载
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
免费
0下载
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 7.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 7.docx
免费
24下载
2016年上海市闵行区高考数学二模试卷(文科).doc
2016年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
免费
0下载
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
13下载
2012年高考数学试卷(理)(浙江)(解析卷).pdf
2012年高考数学试卷(理)(浙江)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料