小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考15题B解三角形综合(解答题)考点4年考题考情分析解三角形大题综合2023年新高考Ⅰ卷第17题2023年新高考Ⅱ卷第17题2022年新高考Ⅰ卷第18题2022年新高考Ⅱ卷第18题2021年新高考Ⅰ卷第19题2021年新高考Ⅱ卷第18题2020年新高考Ⅰ卷第17题2020年新高考Ⅱ卷第17题解三角形大题难度一般,纵观近几年的新高考试题,主要考查正弦定理边角互化、余弦定理、面积公式及最值求解等知识点,同时也是高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以正弦定理边角互化、余弦定理、面积公式、最值求解等知识点,展开命题.1.(2023·新高考Ⅰ卷高考真题第17题)已知在中,.(1)求;(2)设,求边上的高.【答案】(1)(2)6【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;(2)利用同角之间的三角函数基本关系及两角和的正弦公式求,再由正弦定理求出,根据等面积法求解即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1),,即,又,,,,即,所以,.(2)由(1)知,,由,由正弦定理,,可得,,.2.(2023·新高考Ⅱ卷高考真题第17题)记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1);(2).【分析】(1)方法1,利用三角形面积公式求出,再利用余弦定理求解作答;方法2,利用三角形面积公式求出,作出边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a,再利用三角形面积公式求出即可求解作答;方法2,利用向量运算律建立关系求出a,再利用三角形面积公式求出即可求解作答.【详解】(1)方法1:在中,因为为中点,,,则,解得,在中,,由余弦定理得,即,解得,则,,所以.方法2:在中,因为为中点,,,则,解得,在中,由余弦定理得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,解得,有,则,,过作于,于是,,所以.(2)方法1:在与中,由余弦定理得,整理得,而,则,又,解得,而,于是,所以.方法2:在中,因为为中点,则,又,于是,即,解得,又,解得,而,于是,所以.3.(2022·新高考Ⅰ卷高考真题第18题)记的内角A,B,C的对边分别为a,b,c,已知.(1)若,求B;(2)求的最小值.【答案】(1);小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2).【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.【详解】(1)因为,即,而,所以;(2)由(1)知,,所以,而,所以,即有,所以所以.当且仅当时取等号,所以的最小值为.4.(2022·新高考Ⅱ卷高考真题第18题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comc为边长的三个正三角形的面积依次为,已知.(1)求的面积;(2)若,求b.【答案】(1)(2)【分析】(1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;(2)由正弦定理得,即可求解.【详解】(1)由题意得,则,即,由余弦定理得,整理得,则,又,则,,则;(2)由正弦定理得:,则,则,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2021·新高考Ⅰ卷高考真题第19题)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.【答案】(1)证明见解析;(2).【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.【详解】(1)设的外接圆半径为R,由正弦定理,得,因为,所以,即.又因为,所以.(2)[方法一]【最优解】:两次应用余弦定理因为,如图,在中,,①在中,.②由①②得,整理得.又因为,所以,解得或,当时,(舍去).小学...