高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(学生版).docx.doc本文件免费下载 【共18页】

高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(学生版).docx.doc
高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(学生版).docx.doc
高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(学生版).docx.doc
专题10含参函数的极值、最值讨论考点一含参函数的极值【例题选讲】[例1]设a>0,函数f(x)=x2-(a+1)x+a(1+lnx).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[例2]已知函数f(x)=lnx-ax(a∈R).(1)当a=时,求f(x)的极值;(2)讨论函数f(x)在定义域内极值点的个数.[例3]设f(x)=xlnx-ax2+(3a-1)x.(1)若g(x)=f′(x)在[1,2]上单调,求a的取值范围;(2)已知f(x)在x=1处取得极小值,求a的取值范围.[例4](2016·山东)设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.[例5]已知函数f(x)=ex+1,其中e=2.718…为自然对数的底数,常数a>0.(1)求函数f(x)在区间(0,+∞)上的零点个数;(2)函数F(x)的导数F′(x)=f(x),是否存在无数个a∈(1,4),使得lna为函数F(x)的极大值点?请说明理由.【对点训练】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.已知函数f(x)=lnx-ax2+x,a∈R.(1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)令g(x)=f(x)-(ax-1),求函数g(x)的极值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.设函数f(x)=[ax2-(4a+1)x+4a+3]ex.(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知函数f(x)=x2-3x+.(1)若a=4,讨论f(x)的单调性;(2)若f(x)有3个极值点,求实数a的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知函数f(x)=ax-x2-lnx(a∈R).(1)求函数f(x)的单调区间;(2)若函数f(x)存在极值,且这些极值的和大于5+ln2,求实数a的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2018·全国Ⅲ)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)若x=0是f(x)的极大值点,求a.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点二含参函数的最值【例题选讲】[例1]已知函数f(x)=lnx-ax(a∈R).(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在[1,2]上的最小值.[例2]已知函数f(x)=ax2+(1-2a)x-lnx.(1)当a>0时,求函数f(x)的单调递增区间;(2)当a<0时,求函数f(x)在上的最小值.[例3]已知函数f(x)=-1.(1)求函数f(x)的单调区间及极值;(2)设m>0,求函数f(x)在区间[m,2m]上的最大值.[例4]已知函数f(x)=+n,g(x)=x2(m,n,a∈R),且曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.(1)求实数m,n的值及函数f(x)的最大值;(2)当a∈时,记函数g(x)的最小值为b,求b的取值范围.[例5](2019·全国Ⅲ)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.【对点训练】1.已知函数g(x)=alnx+x2-(a+2)x(a∈R).(1)若a=1,求g(x)在区间[1,e]上的最大值;(2)求g(x)在区间[1,e]上的最小值h(a).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.已知函数f(x)=(x-a)ex(a∈R).(1)当a=2时,求函数f(x)的图象在x=0处的切线方程;(2)求函数f(x)在区间[1,2]上的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知函数f(x)=ax-lnx,F(x)=ex+ax,其中x>0,a<0.(1)若f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;(2)若a∈,且函数g(x)=xeax-1-2ax+f(x)的最小值为M,求M的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知函数f(x)=ax+lnx,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
精品解析:2019年上海市宝山区高三上学期期末教学质量监测(一模)数学试题(解析版).docx
精品解析:2019年上海市宝山区高三上学期期末教学质量监测(一模)数学试题(解析版).docx
免费
0下载
高中2023《微专题·小练习》·数学·文科·L-2专练27.docx
高中2023《微专题·小练习》·数学·文科·L-2专练27.docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点27 圆锥曲线中的定点、定值问题.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点27 圆锥曲线中的定点、定值问题.docx
免费
30下载
2017年天津高考文科数学试题及答案(Word版).doc
2017年天津高考文科数学试题及答案(Word版).doc
免费
4下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点8 三角恒等变换与解三角形.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点8 三角恒等变换与解三角形.docx
免费
27下载
2019年高考数学试卷(文)(新课标Ⅰ)(解析卷) (9).pdf
2019年高考数学试卷(文)(新课标Ⅰ)(解析卷) (9).pdf
免费
0下载
2005年江苏高考数学真题及答案.doc
2005年江苏高考数学真题及答案.doc
免费
1下载
2014年高考数学试卷(文)(北京)(解析卷).pdf
2014年高考数学试卷(文)(北京)(解析卷).pdf
免费
0下载
专题4-三角比和三角函数-沪教版高三数学2021-2022一模考试汇编.docx
专题4-三角比和三角函数-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2023《微专题·小练习》·数学·新教材·XL-3专练 22.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 22.docx
免费
24下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (四).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (四).doc
免费
7下载
二轮专项分层特训卷··高三数学·理科主观题专练 (9).doc
二轮专项分层特训卷··高三数学·理科主观题专练 (9).doc
免费
1下载
高中2022·微专题·小练习·数学·理科【统考版】专练1.docx
高中2022·微专题·小练习·数学·理科【统考版】专练1.docx
免费
0下载
高中数学高考数学10大专题技巧--专题33   单变量不等式能成立之参变分离法(学生版).docx.doc
高中数学高考数学10大专题技巧--专题33 单变量不等式能成立之参变分离法(学生版).docx.doc
免费
0下载
2008年高考数学试卷(文)(广东)(空白卷).doc
2008年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
2012年高考数学试卷(文)(新课标)(解析卷) (8).pdf
2012年高考数学试卷(文)(新课标)(解析卷) (8).pdf
免费
0下载
2009年高考数学试卷(理)(陕西)(空白卷).pdf
2009年高考数学试卷(理)(陕西)(空白卷).pdf
免费
0下载
2003年高考数学真题(理科)(湖南自主命题).doc
2003年高考数学真题(理科)(湖南自主命题).doc
免费
12下载
精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群