2024年新高考数学复习资料押新高考第17题 导数综合应用(解答题)(原卷版).docx本文件免费下载 【共10页】

2024年新高考数学复习资料押新高考第17题 导数综合应用(解答题)(原卷版).docx
2024年新高考数学复习资料押新高考第17题 导数综合应用(解答题)(原卷版).docx
2024年新高考数学复习资料押新高考第17题 导数综合应用(解答题)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考17题导数综合应用(解答题)考点4年考题考情分析导数综合2023年新高考Ⅰ卷第19题2023年新高考Ⅱ卷第22题2022年新高考Ⅰ卷第22题2022年新高考Ⅱ卷第22题2021年新高考Ⅰ卷第22题2021年新高考Ⅱ卷第22题2020年新高考Ⅰ卷第21题2020年新高考Ⅱ卷第22题导数大题难度中等或较难,纵观近几年的新高考试题,主要求极值最值、用导数研究函数单调性问题及参数范围求解、不等式证明问题、零点及恒成立问题等知识点,同时也是高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以导数综合问题之单调性、极值最值、求解及证明问题为背景展开命题,难度会降低.1.(2023·新高考Ⅰ卷高考真题第19题)已知函数.(1)讨论的单调性;(2)证明:当时,.2.(2023·新高考Ⅱ卷高考真题第22题)(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.3.(2022·新高考Ⅰ卷高考真题第22题)已知函数和有相同的最小值.(1)求a;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.4.(2022·新高考Ⅱ卷高考真题第22题)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围;(3)设,证明:.5.(2021·新高考Ⅰ卷高考真题第22题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:.6.(2021·新高考Ⅱ卷高考真题第22题)已知函数.(1)讨论的单调性;(2)从下面两个条件中选一个,证明:只有一个零点①;②.1.导函数与原函数的关系单调递增,单调递减2.极值(1)极值的定义小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在处先↗后↘,在处取得极大值在处先↘后↗,在处取得极小值3.两招破解不等式的恒成立问题(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.4.常用函数不等式:①,其加强不等式;②,其加强不等式.③,,放缩,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.利用导数证明不等式问题:(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)转化为证不等式(或),进而转化为证明(),因此只需在所给区间内判断的符号,从而得到函数的单调性,并求出函数的最小值即可.6.证明极值点偏移的相关问题,一般有以下几种方法:(1)证明(或):①首先构造函数,求导,确定函数和函数的单调性;②确定两个零点,且,由函数值与的大小关系,得与零进行大小比较;③再由函数在区间上的单调性得到与的大小,从而证明相应问题;(2)证明(或)(、都为正数):①首先构造函数,求导,确定函数和函数的单调性;②确定两个零点,且,由函数值与的大小关系,得与零进行大小比较;③再由函数在区间上的单调性得到与的大小,从而证明相应问题;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)应用对数平均不等式证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到;③利用对数平均不等式来证明相应的问题.1.(2024·湖南衡阳·二模)已知函数,当时,取得极值.(1)求的解析式;(2)求在区间上的最值.2.(2024·河北·模拟预测)已知函数在处的切线为轴.(1)求的值;(2)求的单调区间.3.(2024·广东韶关·二模)已知函数在点处的切线平行于轴.(1)求实数;(2)求的单调区间和极值.4.(2024·广东·一模)已知,函数.(1)求的单调区间.(2)讨论方程的根的个数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2024·浙江金华·模拟预测)已知函数.(1)求函数在处...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料