2024年新高考数学复习资料第08练 函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共30页】

2024年新高考数学复习资料第08练 函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第08练 函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第08练 函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第08讲函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练)【A组在基础中考查功底】一、单选题1.(2023·北京通州·统考模拟预测)下列函数中,是奇函数且在定义域内单调递增的是()A.B.C.D.【答案】B【分析】根据幂函数、指数函数、正切函数的单调性及奇偶性逐一判断即可.【详解】对于A,函数在上递减,故A不符题意;对于B,函数的定义域为,关于原点对称,因为,所以函数为奇函数,又函数在单调递增,故B符合题意;对于C,函数的定义域为,关于原点对称,因为,所以函数为偶函数,故C不符合题意;对于D,函数,因为,所以函数不是增函数,故D不符题意.故选:B.2.(2023春·河南·高三校联考阶段练习)已知,函数都满足,又,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.3B.C.D.【答案】D【分析】通过分析得,则.【详解】根据题意,,且,则,,则,故,所以函数的周期为6,所以.故选:D.3.(2023·全国·模拟预测)函数的大致图象是()A.B.C.D.【答案】A【分析】首先判断函数的奇偶性,再代入计算和的值即可得到正确答案.【详解】因为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com且函数定义域为,关于原点对称,所以是偶函数,其图象关于轴对称,排除C;,排除B;,排除D.故选:A.4.(2023·高三课时练习)设是定义在上的偶函数,且在上是严格减函数,,则的解集为()A.B.C.D.【答案】C【解析】由函数为偶函数可将不等式化为,即可利用单调性求解.【详解】是定义在上的偶函数,,则不等式为,则,在上是严格减函数,,解得或,又定义域为,故不等式的解集为.故选:C.【点睛】本题考查利用偶函数的性质解不等式,将不等式化为利用单调性求解是解题的关键.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2023·浙江台州·统考二模)已知函数同时满足性质:①;②当时,,则函数可能为()A.B.C.D.【答案】D【分析】①说明为偶函数,②,说明函数在上单调递减,再逐项分析即可.【详解】①说明为偶函数,②,说明函数在上单调递减.A不满足②,B不满足①,C不满足②,因为在单调递减,在单调递增.对于D,满足①,当,单调递减,也满足②.故选:D.6.(2023·黑龙江大庆·铁人中学校考二模)已知函数,若,则实数a的取值范围是()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】D【分析】讨论与0、1的大小关系,写出的解析式,解出不等式后,再求并集即为答案.【详解】因为.①当时,.②当时,.③当时,.综上所述:.故选:D.7.(2023春·江西·高三校联考阶段练习)设函数,则()A.关于对称B.关于对称C.关于对称D.关于对称【答案】D【分析】根据函数对称性的性质依次判断选项即可得到答案.【详解】对选项A,因为,所以不关于对称,故A错误.对选项B,因为,所以不关于对称,故B错误.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对选项C,因为,,,所以不关于对称,故C错误.对选项D,因为,所以关于对称,故D正确.故选:D8.(2023·青海·校联考模拟预测)已知函数为偶函数,且函数在上单调递增,则关于x的不等式的解集为()A.B.C.D.【答案】A【分析】利用函数的奇偶性和对称性,得到函数的单调区间,利用单调性解函数不等式.【详解】因为为偶函数,所以的图像关于y轴对称,则的图像关于直线对称.因为在上单调递增,所以在上单调递减.因为,所以,解得.故选:A.二、多选题9.(2023·全国·高三专题练习)已知定义在上的奇函数的图象连续不断,且满足,则以下结论成立的是()A.函数的周期B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.点是函数图象的一个对称中心D.在上有4个零点【答案】ABC【分析】根据题意求得函数的周期为,结合函数的周期性和,逐项判定,即可求解.【详解】...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2014年高考数学试卷(理)(湖南)(解析卷).pdf
2014年高考数学试卷(理)(湖南)(解析卷).pdf
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(理)(全国乙卷)(解析卷) (9).docx
免费
0下载
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
2009年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展25 立体几何中的截面问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2008年高考数学试卷(理)(辽宁)(解析卷).doc
2008年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
2017年广东高考(理科)数学(原卷版).doc
2017年广东高考(理科)数学(原卷版).doc
免费
26下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(二十四).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(二十四).doc
免费
28下载
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
2022届江苏省南京市江宁高级中学高三下学期适应性考试数学试题(解析版).docx
免费
0下载
安徽A10联盟2023届高考最后一卷数学试题.pdf
安徽A10联盟2023届高考最后一卷数学试题.pdf
免费
18下载
2012年高考数学试卷(理)(天津)(解析卷).doc
2012年高考数学试卷(理)(天津)(解析卷).doc
免费
1下载
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
2008年高考数学试卷(文)(湖南)(解析卷) .pdf
免费
0下载
2010年高考重庆理科数学试题及答案(精校版).doc
2010年高考重庆理科数学试题及答案(精校版).doc
免费
4下载
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 24.docx
免费
0下载
1993年江苏高考文科数学真题及答案.doc
1993年江苏高考文科数学真题及答案.doc
免费
13下载
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2014年江西省高考数学试卷(理科).doc
2014年江西省高考数学试卷(理科).doc
免费
0下载
高中数学状元笔记 06几何&统计(已去水印).pdf
高中数学状元笔记 06几何&统计(已去水印).pdf
免费
19下载
1995年云南高考文科数学真题及答案.doc
1995年云南高考文科数学真题及答案.doc
免费
23下载
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 26.docx
免费
20下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群