小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第11讲对数与对数函数(精讲)题型目录一览①对数式的化简与求值②对数函数的图像与性质③解对数方程与不等式④对数函数的综合应用1.对数式的运算(1)对数的定义:一般地,如果且,那么数叫做以为底的对数,记作,读作以为底的对数,其中叫做对数的底数,叫做真数.(2)常见对数:①一般对数:以且为底,记为,读作以为底的对数;②常用对数:以为底,记为;③自然对数:以为底,记为;(3)对数的性质和运算法则:①;;其中且;②(其中且,);③对数换底公式:;④;⑤;⑥,;⑦和;⑧;2.对数函数的定义及图像一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)对数函数的定义:函数且叫做对数函数.对数函数的图象图象xyx=1(1,0)xalogOxyx=1(1,0)xalogO性质定义域:值域:过定点,即时,在上增函数在上是减函数当时,,当时,当时,,当时,【常用结论】在同一坐标系内,当时,随的增大,对数函数的图象愈靠近轴;当时,对数函数的图象随的增大而远离轴.(见下图)yx11a增大a增大xxxxa4a3a2a1loglogloglogO二、题型分类精讲刷真题明导向小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一、单选题1.(2020·山东·统考高考真题)函数的定义域是()A.B.C.D.【答案】B【分析】根据题意得到,再解不等式组即可.【详解】由题知:,解得且.所以函数定义域为.故选:B2.(2022·天津·统考高考真题)化简的值为()A.1B.2C.4D.6【答案】B【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B3.(2021·天津·统考高考真题)若,则()A.B.C.1D.【答案】C【分析】由已知表示出,再由换底公式可求.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】,,.故选:C.4.(2021·全国·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5B.1.2C.0.8D.0.6【答案】C【分析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.5.(2020·全国·统考高考真题)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为()(ln19≈3)A.60B.63C.66D.69【答案】C【分析】将代入函数结合求得即可得解.【详解】,所以,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,,解得.故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.6.(2020·海南·高考真题)已知函数在上单调递增,则的取值范围是()A.B.C.D.【答案】D【分析】首先求出的定义域,然后求出的单调递增区间即可.【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以,故选:D7.(2021·天津·统考高考真题)函数的图像大致为()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】B【分析】由函数为偶函数可排除AC,再由当时,,排除D,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除AC;当时,,所以,排除D.故选:B.8.(2022·北京·统考高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是()A.当,时,二氧化碳处于液态B.当,时,二氧化碳处于气态C.当,时,二氧化碳处于超临...