2024年新高考数学复习资料第14练 导数的概念及其意义、导数的运算(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共42页】

2024年新高考数学复习资料第14练 导数的概念及其意义、导数的运算(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第14练 导数的概念及其意义、导数的运算(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第14练 导数的概念及其意义、导数的运算(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第14练导数的概念及其意义、导数的运算(精练)一、单选题1.(2021·全国·统考高考真题)若过点可以作曲线的两条切线,则()A.B.C.D.【答案】D【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示:刷真题明导向小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二、解答题2.(2021·北京·统考高考真题)已知函数.(1)若,求曲线在点处的切线方程;【答案】(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;【详解】(1)当时,,则,,,此时,曲线在点处的切线方程为,即;3.(2022·全国·统考高考真题)已知函数(1)当时,求曲线在点处的切线方程;【答案】(1)【分析】(1)先算出切点,再求导算出斜率即可【详解】(1)的定义域为当时,,所以切点为,所以切线斜率为2所以曲线在点处的切线方程为4.(2022·天津·统考高考真题)已知,函数(1)求函数在处的切线方程;【答案】(1)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】(1)求出可求切线方程;【详解】(1),故,而,曲线在点处的切线方程为即.三、填空题5.(2021·全国·统考高考真题)曲线在点处的切线方程为__________.【答案】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当时,,故点在曲线上.求导得:,所以.故切线方程为.故答案为:.6.(2022·全国·统考高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是________________.【答案】【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.【详解】 ,∴,设切点为,则,切线斜率,切线方程为:, 切线过原点,∴,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com整理得:, 切线有两条,∴,解得或,∴的取值范围是,故答案为:7.(2020·全国·统考高考真题)曲线的一条切线的斜率为2,则该切线的方程为______________.【答案】【分析】设切线的切点坐标为,对函数求导,利用,求出,代入曲线方程求出,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为,,所以切点坐标为,所求的切线方程为,即.故答案为:.【点睛】本题考查导数的几何意义,属于基础题.四、双空题8.(2022·全国·统考高考真题)曲线过坐标原点的两条切线的方程为____________,____________.【答案】【分析】分和两种情况,当时设切点为,求出函数的导函数,即可求出切线的斜小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;【详解】[方法一]:化为分段函数,分段求分和两种情况,当时设切点为,求出函数导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;解:因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年北京市高考数学试卷(文科)往年高考真题.doc
2015年北京市高考数学试卷(文科)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料微专题15 三角中的最值、范围问题.docx
2025年新高考数学复习资料微专题15 三角中的最值、范围问题.docx
免费
0下载
2025年新高考数学复习资料2025版新教材高考数学第二轮复习专题练--6.5 数列的综合(含答案).docx
2025年新高考数学复习资料2025版新教材高考数学第二轮复习专题练--6.5 数列的综合(含答案).docx
免费
0下载
2024年新高考数学复习资料专题16 抛物线的焦点弦、中点弦、弦长问题(解析版).docx
2024年新高考数学复习资料专题16 抛物线的焦点弦、中点弦、弦长问题(解析版).docx
免费
0下载
第01讲 计数原理(三大题型)(课件).pptx
第01讲 计数原理(三大题型)(课件).pptx
免费
0下载
2024年新高考数学复习资料专题4.2 三角函数的图象与性质【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题4.2 三角函数的图象与性质【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
2023年北京卷高考真题数学试题 Word版含解析.doc
2023年北京卷高考真题数学试题 Word版含解析.doc
免费
16下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】素养训练(五).docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】素养训练(五).docx
免费
30下载
2025年新高考数学复习资料第01讲 导数的概念及其意义、导数的运算(十二大题型)(练习)(原卷版)(1).docx
2025年新高考数学复习资料第01讲 导数的概念及其意义、导数的运算(十二大题型)(练习)(原卷版)(1).docx
免费
0下载
高中数学高考数学10大专题技巧--专题17 单变量不含参不等式证明方法之虚设零点(教师版).docx
高中数学高考数学10大专题技巧--专题17 单变量不含参不等式证明方法之虚设零点(教师版).docx
免费
0下载
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
免费
0下载
2023年高考数学真题(新高考Ⅰ)(解析版).docx
2023年高考数学真题(新高考Ⅰ)(解析版).docx
免费
1下载
2013年浙江省高考数学【理】(原卷版).doc
2013年浙江省高考数学【理】(原卷版).doc
免费
18下载
7. 衡水中学高考积累与改错_高三数学(第3本)_126页.pdf
7. 衡水中学高考积累与改错_高三数学(第3本)_126页.pdf
免费
18下载
2012年上海市黄浦区高考数学一模试卷(理科).doc
2012年上海市黄浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学高考数学10大专题技巧--专题30  证明数量关系型问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题30 证明数量关系型问题(学生版).docx.doc
免费
0下载
2024年新高考数学复习资料专题14 双曲线中的向量问题(解析版).docx
2024年新高考数学复习资料专题14 双曲线中的向量问题(解析版).docx
免费
0下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
精品解析:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷(解析版).docx
精品解析:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷(解析版).docx
免费
0下载
高考数学专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群