2024年新高考数学复习资料第16讲 导数与函数的极值、最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx本文件免费下载 【共18页】

2024年新高考数学复习资料第16讲 导数与函数的极值、最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第16讲 导数与函数的极值、最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第16讲 导数与函数的极值、最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第16讲导数与函数的极值、最值(精讲)题型目录一览①求函数的极值与极值点②极值、极值点中的参数问题③求函数的最值④最值中的参数问题⑤函数极值、最值的综合应用1.函数的极值函数在点附近有定义,如果对附近的所有点都有,则称是函数的一个极大值,记作.如果对附近的所有点都有,则称是函数的一个极小值,记作.极大值与极小值统称为极值,称为极值点.求可导函数极值的一般步骤(1)先确定函数的定义域;(2)求导数;(3)求方程的根;(4)检验在方程的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数在这个根处取得极小值.注①可导函数在点处取得极值的充要条件是:是导函数的变号零点,即,且在左侧一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与右侧,的符号导号.②是为极值点的既不充分也不必要条件,如,,但不是极值点.另外,极值点也可以是不可导的,如函数,在极小值点是不可导的,于是有如下结论:为可导函数的极值点;但为的极值点.2.函数的最值函数最大值为极大值与靠近极小值的端点之间的最大者;函数最小值为极小值与靠近极大值的端点之间的最小者.一般地,设是定义在上的函数,在内有导数,求函数在上的最大值与最小值可分为两步进行:(1)求在内的极值(极大值或极小值);(2)将的各极值与和比较,其中最大的一个为最大值,最小的一个为最小值.注:①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点;③函数的最值必在极值点或区间端点处取得.【常用结论】(1)若函数在区间D上存在最小值和最大值,则不等式在区间D上恒成立;不等式在区间D上恒成立;不等式在区间D上恒成立;不等式在区间D上恒成立;(2)若函数在区间D上存在最小值和最大值,即,则对不等式有解问题有以下结论:不等式在区间D上有解;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com不等式在区间D上有解;不等式在区间D上有解;不等式在区间D上有解;(3)对于任意的,总存在,使得;(4)对于任意的,总存在,使得;(5)若存在,对于任意的,使得;(6)若存在,对于任意的,使得;(7)对于任意的,使得;(8)对于任意的,使得;(9)若存在,总存在,使得(10)若存在,总存在,使得.题型一求函数的极值与极值点策略方法利用导数研究函数极值问题的一般流程【典例1】已知函数,求函数的极值.二、题型分类精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【题型训练】一、单选题1.(2023·全国·高三专题练习)已知定义在R上的函数f(x),其导函数的大致图象如图所示,则下列叙述正确的是()A.B.函数在x=c处取得最大值,在处取得最小值C.函数在x=c处取得极大值,在处取得极小值D.函数的最小值为2.(2023·广西·统考模拟预测)函数在处取得极小值,则极小值为()A.1B.2C.D.3.(2023·全国·高三专题练习)已知函数的极值点为1,且,则的极小值为()A.B.C.bD.44.(2023春·河北·高三校联考阶段练习)已知函数,则的极大值为()A.-3B.1C.27D.-55.(2023·四川·高三专题练习)函数的极值点个数为()A.0B.1C.2D.3二、多选题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(2023·全国·高三专题练习)已知函数,其中,则下列说法正确的有()A.的极大值为B.的极小值为C.的单调减区间为D.的值域为7.(2023·山西运城·统考三模)已知函数,则下列说法正确的是()A.曲线在处的切线与直线垂直B.在上单调递增C.的极小值为D.在上的最小值为三、填空题8.(202...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料重难点05 导数常考经典压轴小题全归类【十大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料重难点05 导数常考经典压轴小题全归类【十大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
精品解析:江苏省泰州中学2023届高三下学期一模模拟数学试题(原卷版).docx
精品解析:江苏省泰州中学2023届高三下学期一模模拟数学试题(原卷版).docx
免费
0下载
高考数学专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(二十三).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(二十三).docx
免费
12下载
2010年高考数学试卷(江苏)(空白卷).pdf
2010年高考数学试卷(江苏)(空白卷).pdf
免费
0下载
2013年高考数学真题(文科)(北京自主命题).doc
2013年高考数学真题(文科)(北京自主命题).doc
免费
30下载
2014年广东高考(文科)数学(原卷版).doc
2014年广东高考(文科)数学(原卷版).doc
免费
24下载
2025年新高考数学复习资料培优点02指、对、幂的大小比较(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料培优点02指、对、幂的大小比较(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2024年新高考数学复习资料第21讲 函数y=Asin(ωx+φ)的图象性质及其应用(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第21讲 函数y=Asin(ωx+φ)的图象性质及其应用(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料跟踪训练03 等比数列(解析版).docx
2024年新高考数学复习资料跟踪训练03 等比数列(解析版).docx
免费
0下载
2011年高考数学试卷(文)(上海)(空白卷).pdf
2011年高考数学试卷(文)(上海)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题04 灵活运用周期性、单调性、奇偶性、对称性解决函数性质问题(9大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料专题04 灵活运用周期性、单调性、奇偶性、对称性解决函数性质问题(9大核心考点)(讲义)(原卷版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 32.docx
高中2024版《微专题》·数学·新高考专练 32.docx
免费
0下载
上海市虹口区2023-2024学年高三上学期期终学生学习能力诊断测试数学试卷【答案在文末】.docx
上海市虹口区2023-2024学年高三上学期期终学生学习能力诊断测试数学试卷【答案在文末】.docx
免费
0下载
2014年高考数学真题( 江苏自主命题).doc
2014年高考数学真题( 江苏自主命题).doc
免费
7下载
2018年高考数学试卷(文)(新课标Ⅰ)(空白卷) (8).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(空白卷) (8).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(空白卷) (5).docx
2022年高考数学试卷(文)(全国甲卷)(空白卷) (5).docx
免费
0下载
2024年新高考数学复习资料跟踪训练01 数列的概念(原卷版).docx
2024年新高考数学复习资料跟踪训练01 数列的概念(原卷版).docx
免费
0下载
2023年高考数学试卷(北京)(解析卷).pdf
2023年高考数学试卷(北京)(解析卷).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练103.docx
高中2024版考评特训卷·数学【新教材】考点练103.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群