2024年新高考数学复习资料专题05 函数的概念与性质-(解析版).docx本文件免费下载 【共26页】

2024年新高考数学复习资料专题05 函数的概念与性质-(解析版).docx
2024年新高考数学复习资料专题05 函数的概念与性质-(解析版).docx
2024年新高考数学复习资料专题05 函数的概念与性质-(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023年高考数学真题题源解密(全国卷)专题05函数的概念与性质目录一览①2023真题展现考向一函数的零点考向二由函数的奇偶性求参数②真题考查解读③近年真题对比考向一函数的最值考向二函数的奇偶性、对称性、周期性考向三判断函数图像考向四指对数互化考向五由函数的奇偶性求参数④命题规律解密⑤名校模拟探源⑥易错易混速记考向一函数的零点1.(2023·全国乙卷文数第8题)函数存在3个零点,则的取值范围是()A.B.C.D.【答案】B【详解】,则,若要存在3个零点,则要存在极大值和极小值,则,令,解得或,且当时,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当,,故的极大值为,极小值为,若要存在3个零点,则,即,解得,故选:B.考向二由函数的奇偶性求参数2.(2023·全国乙卷理数第4题)已知是偶函数,则()A.B.C.1D.2【答案】D【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.二、填空题1.(2023·全国甲卷理数第13题)若为偶函数,则.【答案】2【详解】因为为偶函数,定义域为,所以,即,则,故,此时,所以,又定义域为,故为偶函数,所以.故答案为:2.【命题意图】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(2)会运用函数图象理解和研究函数的性质.【考查要点】高频考点:函数的概念、图像与性质以及指数函数、对数函数与幂函数低频考点:函数与方程【得分要点】函数作为高中数学内容的一条主线,对整个高中数学有重要意义,每年高考卷都将其作为必考题,题目分布在选择题和填空题。本专题常以基本函数、基本函数组成的复合函数以及抽象函数为载体,对函数内容和性质进行考查,考查函数的定义域、值域,函数的表示方法及性质(单调性、就行、对称性、周期性)、图像等,常与导数、不等式、方程等知识交汇命题,考查数形结合、分类讨论、转化与化归和函数与方程等思想方法。考向一函数的最值1.(2022·全国乙卷文数第11题)函数在区间的最小值、最大值分别为()A.B.C.D.【答案】D【详解】,所以在区间和上,即单调递增;在区间上,即单调递减,又,,,所以在区间上的最小值为,最大值为.故选:D2.(2022·全国甲卷理数第6题)当时,函数取得最大值,则()A.B.C.D.1【答案】B【详解】因为函数定义域为,所以依题可知,,,而,所以小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.故选:B.考向二函数的单调性、奇偶性、对称性、周期性1.(2022·全国乙卷理数第12题)已知函数的定义域均为R,且.若的图像关于直线对称,,则()A.B.C.D.【答案】D【详解】因为的图像关于直线对称,所以,因为,所以,即,因为,所以,代入得,即,所以,.因为,所以,即,所以.因为,所以,又因为,联立得,,所以的图像关于点中心对称,因为函数的定义域为R,所以因为,所以.所以.故选:D2.(2021·全国乙卷理数第4题)设函数,则下列函数中为奇函数的是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】B【详解】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选:B3.(2021·全国甲卷文数第4题)下列函数中是增函数的为()A.B.C.D.【答案】D【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.4.(2021·全国甲卷文数第12题)设是定义域为R的奇函数,且.若,则()A.B.C.D.【答案】C【详解】由题意可得:,而,故.故选:C.5.(2021·全国甲卷理数第12题)设函数的定义域为R,为奇函数,为偶函数,当小学、初中、高中各...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
2024年新高考数学复习资料押上海高考17题(三角函数、立体几何)原卷版.docx
免费
0下载
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 15.docx
免费
5下载
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
专题3-函数应用题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2024版《微专题》·数学·新高考专练 7.docx
2024版《微专题》·数学·新高考专练 7.docx
免费
17下载
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题19三角函数与解三角形第六缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
11下载
2003年河南高考理科数学真题及答案.doc
2003年河南高考理科数学真题及答案.doc
免费
17下载
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
2023年高考数学试卷(文)(全国甲卷)(空白卷) (2).docx
免费
0下载
2017年上海市松江区高考数学二模试卷.doc
2017年上海市松江区高考数学二模试卷.doc
免费
0下载
2022·微专题·小练习·数学【新高考】专练45.docx
2022·微专题·小练习·数学【新高考】专练45.docx
免费
20下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (2).docx
免费
0下载
2012年高考数学试卷(理)(陕西)(解析卷).pdf
2012年高考数学试卷(理)(陕西)(解析卷).pdf
免费
0下载
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
高中2023《微专题·小练习》·数学·新教材·XL-3专练 27.docx
免费
0下载
1994年广东高考理科数学真题及答案.doc
1994年广东高考理科数学真题及答案.doc
免费
20下载
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
2024年新高考数学复习资料押北京卷 第16题 三角函数与解三角形解答题 (解析版).docx
免费
0下载
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第9章 §9.4 列联表与独立性检验.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练23.docx
免费
11下载
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
2017年高考数学试卷(文)(新课标Ⅲ)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题2.1 函数的解析式与定义域、值域【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群