2024年新高考数学复习资料专题05 立体几何(选填题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx本文件免费下载 【共36页】

2024年新高考数学复习资料专题05 立体几何(选填题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
2024年新高考数学复习资料专题05 立体几何(选填题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
2024年新高考数学复习资料专题05 立体几何(选填题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com五年(2019-2023)年高考真题分项汇编专题05立体几何(理科)(选填题)立体几何在文科数高考中属于重点知识点,难度中等。包含题型主要是1空间几何体基本性质及表面积体积2空间几何题三视图3空间几何体内切球外接球的应用4空间几何体情景化应用考点01空间几何体基本性质及表面积体积一、单选题1.(2023·全国·统考乙卷)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为()A.B.C.D.【答案】B【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在中,,而,取中点,连接,有,如图,,,由的面积为,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得,于是,所以圆锥的体积.故选:B2.(2023·全国·统考甲卷)已知四棱锥的底面是边长为4的正方形,,则的面积为()A.B.C.D.【答案】C【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.【详解】法一:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以,则,又,,所以,则,又,,所以,则,在中,,则由余弦定理可得,故,则,故在中,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,又,所以,所以的面积为.法二:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以,在中,,则由余弦定理可得,故,所以,则,不妨记,因为,所以,即,则,整理得①,又在中,,即,则②,两式相加得,故,故在中,,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,所以,所以的面积为.故选:C.3.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为()A.B.C.D.【答案】B【分析】分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.先证平面,则可得到,再证.由三角形相似得到,,再由即可求出体积比.【详解】如图,分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.因为平面,平面,所以平面平面.又因为平面平面,,平面,所以平面,且.在中,因为,所以,所以,在中,因为,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:B4.(2022·全国·统考高考乙卷)在正方体中,E,F分别为的中点,则()A.平面平面B.平面平面C.平面平面D.平面平面【答案】A【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;选项BCD解法一:如图,以点为原点,建立空间直角坐标系,设,则,,则,,设平面的法向量为,则有,可取,同理可得平面的法向量为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,故选:A.选项BCD解法二:解:对于选项B,如图所示,设,,则为平面与平面的交线,在内,作于点,在内,作,交于点,连结,则或其补角为平面与平面所成二面角的平面角,由勾股定理可知:,,底面正方形中,为中点,则,由勾股定理可得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com从而有:,据此可得,即,据此可得平面平面不成立,选项B错误;对于选项C,取的中点,则,由于与平面相交,故平面平面不成立,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word)  课时作业(二十一) 双曲线的标准方程.docx
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word) 课时作业(二十一) 双曲线的标准方程.docx
免费
16下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 39.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 39.docx
免费
27下载
1998年黑龙江高考理科数学真题及答案.doc
1998年黑龙江高考理科数学真题及答案.doc
免费
1下载
高中2023《微专题·小练习》·数学·理科·L-3专练41 空间点、直线、平面之间的位置关系.docx
高中2023《微专题·小练习》·数学·理科·L-3专练41 空间点、直线、平面之间的位置关系.docx
免费
0下载
2016年上海市虹口区高考数学一模试卷.doc
2016年上海市虹口区高考数学一模试卷.doc
免费
0下载
2019年全国II卷高考数学(文科)试题及答案.doc
2019年全国II卷高考数学(文科)试题及答案.doc
免费
0下载
2010年高考数学试卷(文)(上海)(解析卷).doc
2010年高考数学试卷(文)(上海)(解析卷).doc
免费
0下载
2024年新高考数学复习资料专题05 立体几何(选填题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
2024年新高考数学复习资料专题05 立体几何(选填题)-学易金卷:五年(2019-2023)高考数学真题分项汇编(解析版).docx
免费
0下载
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
免费
0下载
精品解析:2022年北京市高考数学试题(原卷版).docx
精品解析:2022年北京市高考数学试题(原卷版).docx
免费
25下载
2017年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
2017年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
免费
0下载
2010年高考数学试卷(理)(辽宁)(解析卷).pdf
2010年高考数学试卷(理)(辽宁)(解析卷).pdf
免费
0下载
1990年高考数学真题(理科)(天津自主命题).doc
1990年高考数学真题(理科)(天津自主命题).doc
免费
25下载
2024年新高考数学复习资料素养拓展06 导数中的公切线问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展06 导数中的公切线问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2009年高考真题数学【理】(山东卷)(含解析版).doc
2009年高考真题数学【理】(山东卷)(含解析版).doc
免费
18下载
高中2023《微专题·小练习》·数学·理科·L-3专练5 函数的单调性与最值.docx
高中2023《微专题·小练习》·数学·理科·L-3专练5 函数的单调性与最值.docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(九).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(九).docx
免费
23下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十八).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十八).docx
免费
20下载
2007年高考数学真题(理科)(安徽自主命题).doc
2007年高考数学真题(理科)(安徽自主命题).doc
免费
30下载
2024年新高考数学复习资料押北京卷 第20题 导数解答题 (原卷版).docx
2024年新高考数学复习资料押北京卷 第20题 导数解答题 (原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群