2024年新高考数学复习资料易错点11 直线与圆-备战2022年高考数学考试易错题(新高考专用)(教师版含解析) .docx本文件免费下载 【共14页】

2024年新高考数学复习资料易错点11  直线与圆-备战2022年高考数学考试易错题(新高考专用)(教师版含解析) .docx
2024年新高考数学复习资料易错点11  直线与圆-备战2022年高考数学考试易错题(新高考专用)(教师版含解析) .docx
2024年新高考数学复习资料易错点11  直线与圆-备战2022年高考数学考试易错题(新高考专用)(教师版含解析) .docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com易错点11直线与圆易错题【01】写直线的截距式方程忽略截距为零的情况直线的截距式方程为,其中分别为该直线在x轴、y轴上的截距,用截距式方程表示直线,首先保证直线在x轴、y轴上的截距都存在,且不为零,当截距不存在,或截距为零,不能使用截距方程表示直线。易错题【02】利用斜率判断直线的垂直忽略斜率不存在的情况若直线的斜率分别为,则,另外还要注意当一条直线的斜率不存在,另一条直线的斜率为零,这两条直线也垂直,因此用斜率判断直线的垂直,不要忽略斜率不存在的情况,此外为了避免讨论直线的斜率是否存在,可利用直线的方向向量,若分别为直线的方向向量,则。易错题【03】忽视方程表示圆的条件致误圆的标准方程为,圆的一般方程为,在用圆的一般方程解题时要注意这一条件。易错题【04】忽略三角形三顶点不共线致误求解与△ABC与直线与圆的交汇问题,要注意三点不共线。01直线l过点,且在两坐标轴上的截距相等,则直线l的方程为【警示】本题错误解法是:因为直线l过点,且在两坐标轴上的截距相等,设直线l的方程为,则,所以,故直线l的方程为,即.【答案】或小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【问诊】错误原因是忽略直线l过原点,截距为零的情况.正确解法为:若直线l过原点,满足题意,此时直线l的方程为;若直线l不过原点,设直线l的方程为,则,所以,故直线l的方程为,即.所以直线l的方程为或.【叮嘱】直线l的方程可以表示为的条件是直线l在两坐标轴上的截距存在且不为零.1.过点,且横、纵截距的绝对值相等的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】当直线经过原点时,横、纵截距都为0,符合题意,当直线不经过原点时,设直线方程为.由题意得解得或综上,符合题意的直线共有3条.故选C.2.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.或D.或【答案】D【解析】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为, 直线过(1,2),∴,∴,∴方程为,故选D﹒02a为何值时,(1)直线l1:x+2ay-1=0与直线l2:(3a-1)x-ay-1=0平行?(2)直线l3:2x+ay=2与直线l4:ax+2y=1垂直?【警示】本题错误解法是:(1)直线x+2ay-1=0与直线(3a-1)x-ay-1=0的方程可变形为y=-x+与y=x-,∴当-=且≠-,即a=时,两直线平行.(2)当-=-1时,两直线垂直,此方程无解,故无论a为何值时,两直线都不垂直.【问诊】(1)没考虑斜率不存在即a=0的情况;(2)没有考虑l3的斜率不存在且l4的斜率为0也符合要求这种情况.【答案】(1)①当a=0时,两直线的斜率不存在,直线l1:x-1=0,直线l2:x+1=0,此时,l1∥l2.②当a≠0时,l1:y=-x+,l2:y=x-,直线l1的斜率为k1=-,直线l2的斜率为k2=,要使两直线平行,必须解得a=.综合①②可得当a=0或a=时,两直线平行.(2)方法一①当a=0时,直线l3的斜率不存在,直线l3:x-1=0,直线l4:y-=0,此时,l3⊥l4.②当a≠0时,直线l3:y=-x+与直线l4:y=-x+,直线l3的斜率为k3=-,直线l4的斜率为k4=-,要使两直线垂直,必须k3·k4=-1,即-·=-1,不存在实数a使得方程成立.综合①②可得当a=0时,两直线垂直.方法二要使直线l3:2x+ay=2和直线l4:ax+2y=1垂直,根据两直线垂直的充要条件,必须A1A2+B1B2=0,即2a+2a=0,解得a=0,所以,当a=0时,两直线垂直.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【叮嘱】求直线方程,特别是研究含参数的直线方程问题时,一定要对直线斜率的存在性进行讨论,这是避免出错的重要方法.1.已知直线与直线垂直,则实数a的值为()A.B.C.或D.不存在【答案】C【解析】当时,直线,直线,两直线垂直,符合题意;当时,由两直线垂直可得,解得或1(舍去),综上所述,或.故选C2.(2022届“四省八校”高三上学期期中)直线和直线垂直,则实数的值为()A.或B.C.D.【答案】A【解析】因为直线和直线垂直,所以,或.故选A.03已知圆C的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
免费
0下载
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
免费
0下载
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
免费
1下载
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
17下载
2014年天津市高考数学试卷(理科)往年高考真题.doc
2014年天津市高考数学试卷(理科)往年高考真题.doc
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 26.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 26.docx
免费
4下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练19.docx
高中2024版考评特训卷·数学【新教材】考点练19.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练47.docx
2022·微专题·小练习·数学【新高考】专练47.docx
免费
8下载
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
免费
0下载
2010年高考数学真题(文科)(新课标)(解析版).doc
2010年高考数学真题(文科)(新课标)(解析版).doc
免费
8下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
免费
3下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群