2024年新高考数学复习资料第02讲 函数的性质:单调性、奇偶性、周期性、对称性(练习)(解析版).docx本文件免费下载 【共22页】

2024年新高考数学复习资料第02讲 函数的性质:单调性、奇偶性、周期性、对称性(练习)(解析版).docx
2024年新高考数学复习资料第02讲 函数的性质:单调性、奇偶性、周期性、对称性(练习)(解析版).docx
2024年新高考数学复习资料第02讲 函数的性质:单调性、奇偶性、周期性、对称性(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第02讲函数的性质:单调性、奇偶性、周期性、对称性(模拟精练+真题演练)1.(2023·江西鹰潭·贵溪市实验中学校考模拟预测)已知偶函数的图象关于点中心对称,当时,,则()A.B.C.D.【答案】C【解析】偶函数的图象关于点中心对称,则,且,故,,故函数为周期为的函数,.故选:C2.(2023·广东广州·统考模拟预测)已知函数,若,则实数的取值范围为()A.B.C.D.【答案】A【解析】当时,,则,同理,当时,,则,且,可知函数为奇函数;当时,,则,令,则,所以在单调递增,即,即,所以在单调递增,且为奇函数,所以在上单调递增.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,即,即,可得,且,所以,解得,所以解集为.故选:A3.(2023·河南·模拟预测)已知是定义在R上的奇函数,且满足,当时,,则()A.0B.C.1D.【答案】A【解析】因为是定义在R上的奇函数,且满足,所以,,则,即,则,即是以为周期的周期函数,又,当时,,所以.故选:A4.(2023·河南·校联考模拟预测)已知是定义在上的函数,且为奇函数,为偶函数,当时,,若,,,则a,b,c的大小关系为()A.B.C.D.【答案】D【解析】由为奇函数,得,即,又由为偶函数,得,即,于是,即,因此的周期为8,又当时,,则在上单调递增,由,得的图象关于点成中心对称,则函数在上单调递增,因此函数在上单调递增,由,得的图象关于直线对称,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,,,显然,即有,即,所以a,b,c的大小关系为.故选:D5.(2023·辽宁丹东·统考二模)设函数由关系式确定,函数,则()A.为增函数B.为奇函数C.值域为D.函数没有正零点【答案】D【解析】由题意,在函数中,,可知画以下曲线:,,.这些曲线合并组成图象,是两段以为渐近线的双曲线和一段圆弧构成.因为作图象在轴右侧部分包括点关于x轴对称,得到曲线,再作关于坐标原点对称,去掉点得到曲线,与合并组成图象.由图象可知,不是奇函数,不是增函数,值域为R.当时,图象与图象没有公共点,从而函数没有正零点.故选:D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(2023·江西抚州·统考模拟预测)已知函数都是定义在上的函数,是奇函数,是偶函数,且,则()A.-4052B.-4050C.-1012D.-1010【答案】A【解析】因为是偶函数,所以,由知,,所以,则f(x)为偶函数.由是奇函数可知,,所以,则,则,所以,所以,则,所以,则4为f(x)的一个周期.由得,,则,所以,由得,,即,所以,由,得,又1,所以;在中,令,得,所以..故选:A.7.(2023·山西·校联考模拟预测)已知函数,都是定义在R上的函数,是奇函数,是偶函数,且,,则()A.B.C.D.【答案】A【解析】因为是偶函数,所以.由知,,所以,则为偶函数.由是奇函数可知,,所以,则,则,所以,所以,则,所以,则4为的一个周期.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由得,,则,所以,由得,,即,所以.由,得,又1,所以;在中,令,得,所以..故选:A.8.(2023·江西九江·统考三模)已知定义在R上的函数在上单调递增,是奇函数,的图像关于直线对称,则()A.在上单调递减B.在上单调递增C.在上单调递减D.在上单调递增【答案】C【解析】是奇函数,,即的图象关于点对称,又在上单调递增,在上单调递增,即在上单调递增.由,可得,由图像关于直线对称可知为偶函数,∴在上单调递减,,,是周期函数,最小正周期为4, ,,∴在上的单调性和在上的单调性相同,在上单调递减.故选:C.9.(多选题)(2023·湖北武汉·统考模拟预测)已知非常数函数及其导函数的定义域均为R,若为奇函数,为偶函数,则().A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】BCD【解析】因为非常数函数及其导函数的定义域均为R,若为奇函数,则,则函数关于点成中心对称,且,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料重难点突破01 求函数中值域、最值常用方法(原卷版).docx
2024年新高考数学复习资料重难点突破01 求函数中值域、最值常用方法(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 38.docx
2024版《微专题》·数学·新高考专练 38.docx
免费
11下载
2024年新高考数学复习资料专题14 空间几何体的折叠及多面体的问题(原卷版).docx
2024年新高考数学复习资料专题14 空间几何体的折叠及多面体的问题(原卷版).docx
免费
0下载
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD  课时作业(十三).docx
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD 课时作业(十三).docx
免费
1下载
2002年海南高考理科数学真题及答案.doc
2002年海南高考理科数学真题及答案.doc
免费
3下载
2024年新高考数学复习资料专题12 坐标系与参数方程-2022年高考真题和模拟题数学分专题训练(学生版).docx
2024年新高考数学复习资料专题12 坐标系与参数方程-2022年高考真题和模拟题数学分专题训练(学生版).docx
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 55.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 55.docx
免费
6下载
2020年高考数学试卷(上海)(春考)(空白卷) (1).docx
2020年高考数学试卷(上海)(春考)(空白卷) (1).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).pdf
2021年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).pdf
免费
1下载
2014年上海市黄浦区高考数学一模试卷(文科).doc
2014年上海市黄浦区高考数学一模试卷(文科).doc
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷).docx
免费
0下载
精品解析:上海市嘉定区2024届高三一模数学试题(原卷版).docx
精品解析:上海市嘉定区2024届高三一模数学试题(原卷版).docx
免费
0下载
2020年高考数学试卷(上海)(秋考)(空白卷).pdf
2020年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
2018年高考数学试卷(文)(天津)(空白卷).doc
2018年高考数学试卷(文)(天津)(空白卷).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 32.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 32.docx
免费
27下载
1997年海南高考文科数学真题及答案.doc
1997年海南高考文科数学真题及答案.doc
免费
9下载
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测四.docx
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测四.docx
免费
11下载
2023年高考数学试卷(新课标Ⅱ卷)(空白卷).docx
2023年高考数学试卷(新课标Ⅱ卷)(空白卷).docx
免费
0下载
精品解析:2020届上海市嘉定区高三一模数学试题(原卷版).docx
精品解析:2020届上海市嘉定区高三一模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题一(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题一(含解析).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料