2024年新高考数学复习资料第05讲 对数与对数函数(练习)(解析版).docx本文件免费下载 【共19页】

2024年新高考数学复习资料第05讲 对数与对数函数(练习)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(练习)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第05讲对数与对数函数(模拟精练+真题演练)1.(2023·上海金山·上海市金山中学校考模拟预测)“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】的解集是,反之不成立.所以“”是“”的必要不充分条件.故选:B2.(2023·安徽·校联考模拟预测)19世纪美国天文学家西蒙·纽康在翻阅对数表时,偶然发现表中以1开头的数出现的频率更高.约半个世纪后,物理学家本·福特又重新发现这个现象,从实际生活得出的大量数据中,以1开头的数出现的频数约为总数的三成,并提出本·福特定律,即在大量进制随机数据中,以开头的数出现的概率为,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.若(,),则的值为()A.2B.3C.4D.5【答案】B【解析】依题意,得,又,故.故选:B.3.(2023·河南·校联考模拟预测)已知,,有以下命题:①;②;③;④.其中正确命题的序号是()A.②③B.①③C.①④D.②④【答案】B【解析】因为,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,,所以,即:所以,故①正确,②错误;又因为,所以,所以,即:,所以,故③正确,④错误.故选:B.4.(2023·河北石家庄·统考三模)18世纪数学家欧拉研究调和级数得到了以下的结果:当很大时,(常数).利用以上公式,可以估计的值为()A.B.C.D.【答案】C【解析】由题意,所以,故选:C.5.(2023·山西阳泉·统考三模)函数在区间存在零点.则实数m的取值范围是()A.B.C.D.【答案】B【解析】由在上单调递增,在上单调递增,得函数在区间上单调递增,因为函数在区间存在零点,所以,即,解得,所以实数m的取值范围是.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(2023·安徽黄山·统考三模)“”是“函数在区间上单调递增”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】令,,若在上单调递增,因为是上的增函数,则需使是上的增函数且,则且,解得.因为⫋,故是的必要不充分条件,故选:C.7.(2023·内蒙古赤峰·校联考三模)已知函数,若方程有解,则实数b的取值范围是()A.B.C.D.【答案】C【解析】(当且仅当,也即时取等号)∴,故选:C.8.(2023·天津滨海新·统考三模)已知,,,则的最小值为()A.4B.6C.8D.10【答案】B【解析】由知,结合,以及换底公式可知,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,当且仅当,,即时等号成立,即时等号成立,故的最小值为,故选:B.9.(多选题)(2023·全国·高三专题练习)下列运算中正确的是()A.B.C.当时,D.若,则【答案】BC【解析】,A错;,B正确;当时,,C正确;时,,所以,D错.故选:BC.10.(多选题)(2023·全国·高三专题练习)已知,现有下面四个命题中正确的是()A.若,则B.若,则C.若,则D.若,则【答案】AB小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】当时,由,可得,则,此时,所以A正确;当时,由,可得,则,所以B正确.故选:AB.11.(多选题)(2023·全国·高三专题练习)已知函数(且)的图象如下所示.函数的图象上有两个不同的点,,则()A.,B.在上是奇函数C.在上是单调递增函数D.当时,【答案】BCD【解析】对于A,由图像可知,函数(且)在上单调递增,所以,因为经过,所以,所以,,故A错误.对于B,,定义域关于原点对称,,所以在上是奇函数,故B正确.对于C,对于,由题意不妨令,则,因为,,所以,即,所以在上是单调递增函数,故C正确.对于D,,因为,,所以,所以,当且仅当时等号成立,即当时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com成立,故D正确.故选:BCD12.(多选题)(2023·全国·高三专题练习)已知函数的零点...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
免费
3下载
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
免费
6下载
2024年新高考数学复习资料重难点突破01  平面向量中最值、范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 平面向量中最值、范围问题(解析版).docx
免费
0下载
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练109.docx
高中2024版考评特训卷·数学【新教材】考点练109.docx
免费
0下载
2017年高考数学试卷(理)(北京)(空白卷).pdf
2017年高考数学试卷(理)(北京)(空白卷).pdf
免费
0下载
高考数学复习  模拟预测卷01(新课标卷)(原卷版).docx
高考数学复习 模拟预测卷01(新课标卷)(原卷版).docx
免费
0下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
免费
13下载
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
17下载
高中2024版《微专题》·数学(文)·统考版专练 22.docx
高中2024版《微专题》·数学(文)·统考版专练 22.docx
免费
0下载
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考数学试卷(浙江)(解析卷).doc
2019年高考数学试卷(浙江)(解析卷).doc
免费
0下载
2016年湖南高考理科数学试题及答案.docx
2016年湖南高考理科数学试题及答案.docx
免费
4下载
2009年高考数学试卷(理)(山东)(解析卷).doc
2009年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2017年江苏省高考数学试卷.doc
2017年江苏省高考数学试卷.doc
免费
0下载
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
免费
0下载
2021年全国高考甲卷数学(理)试题(解析版).doc
2021年全国高考甲卷数学(理)试题(解析版).doc
免费
28下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料