小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第05讲对数与对数函数(模拟精练+真题演练)1.(2023·上海金山·上海市金山中学校考模拟预测)“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2023·安徽·校联考模拟预测)19世纪美国天文学家西蒙·纽康在翻阅对数表时,偶然发现表中以1开头的数出现的频率更高.约半个世纪后,物理学家本·福特又重新发现这个现象,从实际生活得出的大量数据中,以1开头的数出现的频数约为总数的三成,并提出本·福特定律,即在大量进制随机数据中,以开头的数出现的概率为,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.若(,),则的值为()A.2B.3C.4D.53.(2023·河南·校联考模拟预测)已知,,有以下命题:①;②;③;④.其中正确命题的序号是()A.②③B.①③C.①④D.②④4.(2023·河北石家庄·统考三模)18世纪数学家欧拉研究调和级数得到了以下的结果:当很大时,(常数).利用以上公式,可以估计的值为()A.B.C.D.5.(2023·山西阳泉·统考三模)函数在区间存在零点.则实数m的取值范围是()A.B.C.D.6.(2023·安徽黄山·统考三模)“”是“函数在区间上单调递增”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件7.(2023·内蒙古赤峰·校联考三模)已知函数,若方程有解,则实数b的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com取值范围是()A.B.C.D.8.(2023·天津滨海新·统考三模)已知,,,则的最小值为()A.4B.6C.8D.109.(多选题)(2023·全国·高三专题练习)下列运算中正确的是()A.B.C.当时,D.若,则10.(多选题)(2023·全国·高三专题练习)已知,现有下面四个命题中正确的是()A.若,则B.若,则C.若,则D.若,则11.(多选题)(2023·全国·高三专题练习)已知函数(且)的图象如下所示.函数的图象上有两个不同的点,,则()A.,B.在上是奇函数C.在上是单调递增函数D.当时,12.(多选题)(2023·全国·高三专题练习)已知函数的零点为,函数的零点为,则下列不等式中成立的是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com13.(2023·四川成都·成都七中校考模拟预测)设定义在上且,则______.14.(2023·全国·模拟预测)写出一个同时具有下列性质①②③的函数______.①;②当时,(为的导函数);③函数的图象关于点对称.15.(2023·天津和平·统考二模)设,,,若,,则的最大值为__________.16.(2023·辽宁·校联考三模)已知函数,若,且,则实数的取值范围是__________.17.(2023·全国·高三专题练习)求值:(1);(2);(3);(4).(5)2log32-log3+log38-;(6)(log2125+log425+log85)·(log52+log254+log1258).(7)lg25+lg2+lg+lg(0.01)-1;(8)(lg2)2+lg2·lg50+lg25;(9)(log32+log92)·(log43+log83);(10)2log32-log3+log38-3log55;18.(2023·全国·高三专题练习)(1)计算;(2)已知,求实数x的值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)若,,用a,b,表示.19.(2023·四川成都·统考二模)已知函数(1)当时,求函数的定义域;(2)当函数的值域为R时,求实数的取值范围.20.(2023·全国·高三专题练习)已知函数,有意义时的取值范围为,其中为实数.(1)求的值;(2)写出函数的单调区间,并求函数的最大值.21.(2023·海南省直辖县级单位·校联考一模)已知函数为奇函数.(1)求常数的值;(2)当时,判断的单调性;(3)若函数,且在区间上没有零点,求实数的取值范围.22.(2023·高三课时练习)已知函数的定义域为,值域为,且函数为上的严格减函数,求实数a的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2022·北京·统考高考真题)在北京冬奥会上,国...