2024年新高考数学复习资料第07讲 函数与方程(练习)(解析版).docx本文件免费下载 【共18页】

2024年新高考数学复习资料第07讲 函数与方程(练习)(解析版).docx
2024年新高考数学复习资料第07讲 函数与方程(练习)(解析版).docx
2024年新高考数学复习资料第07讲 函数与方程(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第07讲函数与方程(模拟精练+真题演练)1.(2023·山东潍坊·统考模拟预测)函数在区间上的零点个数是()A.3B.4C.5D.6【答案】A【解析】求函数在区间上的零点个数,转化为方程在区间上的根的个数.由,得或,解得:或或,所以函数在区间上的零点个数为3.故选:A.2.(2023·湖北·黄冈中学校联考模拟预测)设表示m,n中的较小数.若函数至少有3个零点,则实数的取值范围是()A.B.C.D.【答案】A【解析】由题意可得有解,所以,解得或,当时,必有,解得;当时,必有,不等式组无解,综上所述,,∴的取值范围为.故选:A3.(2023·河北·统考模拟预测)已知函数,若恰有两个零点,则的取小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com值范围为()A.B.C.D.【答案】D【解析】恰有两个零点,即恰有两个实数根,由于,所以恰有两个实数根等价于恰有两个实数根,令,则,当时,,故当此时单调递增,当,此时单调递减,故当时,取极小值也是最小值,且当时,,当时,,且单调递增,在直角坐标系中画出的大致图象如图:要使有两个交点,则,故选:D4.(2023·江西·统考模拟预测)函数在区间内的零点个数是()A.2B.3C.4D.5【答案】A【解析】由,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com得,又,所以,所以或解得或.所以函数在的零点个数是2.故选:A.5.(2023·江西赣州·统考一模)已知函数,则方程的实根个数为()A.3B.4C.5D.6【答案】A【解析】,解得或,当时,,解得,,解得(舍);当时,,解得或(舍),,解得或(舍);综上,方程的实根为或或,即方程的实根个数为3个,故选:A.6.(2023·湖南邵阳·统考二模)已知函数若存在实数,,,,满足,则的取值范围是()A.B.C.D.【答案】C【解析】画出的图象如下图:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由题意可知,,由图象可知关于直线对称,所以,因此,当时,,此时,当时,,此时,当存在,,,使得时,此时,故选:C7.(2023·河南郑州·统考模拟预测)已知函数,若方程在上恰有5个不同实根,则m的取值范围是()A.B.C.D.【答案】D【解析】因为函数,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,方程可化为,解得,则当时,,当时,方程可化为,解得,则当时,因为根据方程在上恰有5个不同实根,所以这5个不同实根为,则,故选:D.8.(2023·山东·校联考模拟预测)从古至今,中国人一直追求着对称美学.世界上现存规模最大、保存最为完整的木质结构——故宫:金黄的宫殿,朱红的城墙,汉白玉的阶,琉璃瓦的顶……沿着一条子午线对称分布,壮美有序,和谐庄严,映祇着蓝天白云,宛如东方仙境.再往远眺,一线贯穿的对称风格,撑起了整座北京城.某建筑物的外形轮廓部分可用函数的图像来刻画,满足关于的方程恰有三个不同的实数根,且(其中),则的值为()A.B.C.D.【答案】C【解析】因为,所以关于对称,所以的根应成对出现,又因为的方程恰有三个不同的实数根且,所以该方程的一个根是,得,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由得,当,即时,,①则,②由①②可求出,所以;当,即时,,③,④由③④得方程组无实数解;综上,方程组的解为,所以.故选:C.9.(多选题)(2023·全国·模拟预测)已知定义域为的函数满足不恒为零,且,,,则下列结论正确的是()A.B.是奇函数C.的图像关于直线对称D.在[0,10]上有6个零点【答案】AB【解析】选项A:对于,令,得,对于,令,得,所以,则,A正确;选项B:由得,由得,所以,是奇函数,B正确;选项C:由,得,所以12是的一个周期,又是奇函数,所以的图像关于点对称,因为不恒为零,所以的图像不关于直线对称,C错误;选项D:由A知,对于,令,得,所以,由,得,,所以,所以在上的零点为0,2,3,4,6,8,9,10,共8个,D错误.故选:AB.10.(多选题)(2023·...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年重庆市高考数学试卷(文科).doc
2014年重庆市高考数学试卷(文科).doc
免费
0下载
2024年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
2024年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
免费
0下载
2024年新高考数学复习资料专题3.1 导数的概念及其几何意义与运算【八大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题3.1 导数的概念及其几何意义与运算【八大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
1992年高考数学真题(理科)(江苏自主命题).doc
1992年高考数学真题(理科)(江苏自主命题).doc
免费
4下载
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(教师版).docx
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(教师版).docx
免费
0下载
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
免费
0下载
高中数学 题库 高考易错题 理数(答案册).pdf
高中数学 题库 高考易错题 理数(答案册).pdf
免费
0下载
精品解析:江苏省四校联合2024届高三新题型适应性考试数学试题(解析版).docx
精品解析:江苏省四校联合2024届高三新题型适应性考试数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料“8+3+3”小题强化训练(8)(新高考九省联考题型)(原卷版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(8)(新高考九省联考题型)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(大纲版)(空白卷) (2).pdf
2011年高考数学试卷(理)(大纲版)(空白卷) (2).pdf
免费
0下载
2014年上海市长宁区高考数学一模试卷(理科).doc
2014年上海市长宁区高考数学一模试卷(理科).doc
免费
0下载
2011年海南省高考文科数学试题及答案.doc
2011年海南省高考文科数学试题及答案.doc
免费
7下载
2014年上海市闵行区高考数学二模试卷(文科).doc
2014年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
2009年高考数学试卷(文)(全国卷Ⅰ)(空白卷) (1).pdf
2009年高考数学试卷(文)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2015年安徽省高考数学试卷(理科)往年高考真题.doc
2015年安徽省高考数学试卷(理科)往年高考真题.doc
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (4).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (4).pdf
免费
0下载
专题07 解析几何(三大类型题综合)15区新题速递(解析版).docx
专题07 解析几何(三大类型题综合)15区新题速递(解析版).docx
免费
0下载
2017年高考数学试卷(江苏)(解析卷).pdf
2017年高考数学试卷(江苏)(解析卷).pdf
免费
0下载
高中数学·必修第三册·RJ-B课时作业(word)  详解答案.docx
高中数学·必修第三册·RJ-B课时作业(word) 详解答案.docx
免费
8下载
2022·微专题·小练习·数学·文科【统考版】专练18.docx
2022·微专题·小练习·数学·文科【统考版】专练18.docx
免费
3下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群