2024年新高考数学复习资料第01讲 导数的概念与运算(练习)(解析版).docx本文件免费下载 【共16页】

2024年新高考数学复习资料第01讲 导数的概念与运算(练习)(解析版).docx
2024年新高考数学复习资料第01讲 导数的概念与运算(练习)(解析版).docx
2024年新高考数学复习资料第01讲 导数的概念与运算(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第01讲导数的概念与运算(模拟精练+真题演练)1.(2023·全国·模拟预测)已知为实数,函数是偶函数,则曲线在点处的切线方程为()A.B.C.D.【答案】A【解析】因为是偶函数,所以,所以,故,又,所以,,故曲线在点处的切线方程为,即.故选:A.2.(2023·陕西宝鸡·统考二模)已知抛物线C:,()的焦点为F,为C上一动点,若曲线C在点M处的切线的斜率为,则直线FM的斜率为()A.B.C.D.【答案】B【解析】 ,∴,,∴,由题意知,,解得:,又 M在上,∴,解得:,∴,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴.故选:B.3.(2023·陕西榆林·统考模拟预测)已知函数,若的图象在处的切线与坐标轴围成的三角形的面积为1,则()A.B.2C.±2D.【答案】D【解析】因为,所以.因为,所以的图象在处的切线方程为.因为切线与坐标轴能围成三角形,所以,令,得,令,得,所以,所以.故选:D4.(2023·浙江绍兴·统考模拟预测)如图是函数的导函数的图象,若,则的图象大致为()A.B.C.D.【答案】D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】由的图象可知,当时,,则在区间上,函数上各点处切线的斜率在区间内,对于A,在区间上,函数上各点处切线的斜率均小于0,故A不正确;对于B,在区间上,函数上存在点,在该点处切线的斜率大于1,故B不正确;对于C,在区间上,函数上存在点,在该点处切线的斜率大于1,故C不正确;对于D,由的图象可知,当时,,当时,,当时,,所以函数上各点处切线的斜率在区间内,在上单调递增,在上单调递减,在上单调递增,而函数的图象均符合这些性质,故D正确.故选:D5.(2023·山东潍坊·统考模拟预测)设为上的可导函数,且,则曲线在点处的切线斜率为()A.2B.-1C.1D.【答案】C【解析】.故曲线在点处的切线斜率为.故选:C6.(2023·河南郑州·统考模拟预测)若过原点与曲线相切的直线,切点均与原点不重合的有2条,则的取值范围是()A.B.C.D.【答案】C【解析】因为,所以,设过原点的切线与曲线在处相切,所以切线的斜率,整理得,设,则,所以当时,当时,所以在上单调递增,在上单调递减,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,且当时,当时,所以当时过原点与曲线相切的直线有2条.故选:C7.(2023·湖南衡阳·校联考模拟预测)若曲线与有三条公切线,则的取值范围为()A.B.C.D.【答案】A【解析】设公切线为是与的切点,由,得,设是与的切点,由,得,所以的方程为,因为,整理得,同理,因为,整理得,依题意两条直线重合,可得,消去,得,由题意此方程有三个不等实根,设,即直线与曲线有三个不同的交点,因为,令,则,当或时,;当时,,所以有极小值为,有极大值为,因为,,,所以,当趋近于时,趋近于0;当趋近于时,趋近于,故的图象简单表示为下图:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当,即时,直线与曲线有三个交点.故选:A.8.(2023·湖北·模拟预测)已知函数,都有的最小值为0,则的最小值为()A.B.C.D.【答案】A【解析】由题意知,都有的最小值为0,可转化为直线与相切.设切点坐标为,则可得,可得.令,则,当时,,函数单调递减;当时,,函数单调递增.所以,即的最小值为.故选:A.9.(多选题)(2023·重庆·校联考三模)德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,对,,且,总有,则下列选项正确的是()A.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comB.C.D.【答案】ABD【解析】A选项,根据可得,在R上单调递增,因为,所以,A正确;B选项,因为,,且,总有,所以函数图象上凸,画出函数图象,由几何意义可...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群