2024年新高考数学复习资料第02讲 单调性问题(练习)(解析版).docx本文件免费下载 【共17页】

2024年新高考数学复习资料第02讲 单调性问题(练习)(解析版).docx
2024年新高考数学复习资料第02讲 单调性问题(练习)(解析版).docx
2024年新高考数学复习资料第02讲 单调性问题(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第02讲单调性问题(模拟精练+真题演练)1.(2023·全国·模拟预测)已知幂函数,若,则下列说法正确的是()A.函数为奇函数B.函数为偶函数C.函数在上单调递增D.函数在上单调递减【答案】B【解析】依题意,则,设单调递减,单调递增,知该方程有唯一解,故,易知该函数为偶函数.故选:B.2.(2023·江西鹰潭·贵溪市实验中学校考模拟预测)函数的单调递增区间为()A.B.C.D.【答案】D【解析】因为,所以,由,即,解得,所以函数的单调递增区间为,故选:D3.(2023·广西玉林·统考模拟预测)若函数在区间上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则的取值范围是()A.B.C.D.【答案】B【解析】,因为在区间上单调递增,所以在上恒成立,即在上恒成立,因为二次函数的图象的对称轴为,且开口向上所以的最小值为1,所以.故选:B.4.(2023·甘肃兰州·校考一模)已知是偶函数,在(-∞,0)上满足恒成立,则下列不等式成立的是()A.B.C.D.【答案】A【解析】时,即,∴在上单调递减,又为偶函数,∴在上单调递增.∴,∴.故选:A.5.(2023·全国·模拟预测)已知,且,,,其中是自然对数的底数,则()A.B.C.D.【答案】A【解析】由题意可得,,,令,则,因为当时,单调递增,所以,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,则,因为当时,,所以在上单调递增,又因为且,所以,故选:A6.(2023·江苏南京·南京师大附中校考模拟预测)已知实数,满足,,其中是自然对数的底数,则的值为()A.B.C.D.【答案】B【解析】由可得,,即,也即,由可得,所以,即,构造函数,在恒成立,所以函数在定义域上单调递减,所以,即,又因为,所以,所以,解得,故选:B.7.(2023·宁夏银川·校联考二模)已知,,对,且,恒有,则实数的取值范围是()A.B.C.D.【答案】A【解析】设,,对,且,恒有,即,在上单调递增,故恒成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,设,,当时,,函数单调递增;当时,,函数单调递减;故,即,即.故选:A8.(2023·四川南充·统考三模)已知函数使(为常数)成立,则常数的取值范围为()A.B.C.D.【答案】C【解析】因为,在定义域上单调递增,又使(为常数)成立,显然,所以不妨设,则,即,令,,则,即函数在上存在单调递增区间,又,则在上有解,则在上有解,令,,则,所以在上单调递增,所以,所以,即常数的取值范围为.故选:C9.(多选题)(2023·山东潍坊·统考模拟预测)下列函数中,在其定义域内既是奇函数又是增函数的是()A.B.C.D.【答案】AD【解析】对于A,,故为奇函数,,故为定义域内的单调递增函数,故A正确,对于B,,故为非奇非偶函数,故B错误,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于C,在定义域内不是单调增函数,故C错误,对于D,,,所以定义域内既是奇函数又是增函数,故D正确,故选:AD10.(多选题)(2023·安徽淮北·统考一模)已知函数,则()A.在单调递增B.有两个零点C.曲线在点处切线的斜率为D.是奇函数【答案】AC【解析】对A:,定义域为,则,由都在单调递增,故也在单调递增,又,故当时,,单调递减;当时,,单调递增;故A正确;对B:由A知,在单调递减,在单调递增,又,故只有一个零点,B错误;对C:,根据导数几何意义可知,C正确;对D:定义域为,不关于原点对称,故是非奇非偶函数,D错误.故选:AC.11.(多选题)(2023·河北·统考模拟预测)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,不等号的引入对不等式的发展影响深远.若,则()A.B.C.D.【答案】ABD【解析】设,,则在上恒成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在上单调递增,因为,所以,A正确;由得,即,又因为单...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
免费
3下载
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
免费
6下载
2024年新高考数学复习资料重难点突破01  平面向量中最值、范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 平面向量中最值、范围问题(解析版).docx
免费
0下载
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练109.docx
高中2024版考评特训卷·数学【新教材】考点练109.docx
免费
0下载
2017年高考数学试卷(理)(北京)(空白卷).pdf
2017年高考数学试卷(理)(北京)(空白卷).pdf
免费
0下载
高考数学复习  模拟预测卷01(新课标卷)(原卷版).docx
高考数学复习 模拟预测卷01(新课标卷)(原卷版).docx
免费
0下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
免费
13下载
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
17下载
高中2024版《微专题》·数学(文)·统考版专练 22.docx
高中2024版《微专题》·数学(文)·统考版专练 22.docx
免费
0下载
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考数学试卷(浙江)(解析卷).doc
2019年高考数学试卷(浙江)(解析卷).doc
免费
0下载
2016年湖南高考理科数学试题及答案.docx
2016年湖南高考理科数学试题及答案.docx
免费
4下载
2009年高考数学试卷(理)(山东)(解析卷).doc
2009年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2017年江苏省高考数学试卷.doc
2017年江苏省高考数学试卷.doc
免费
0下载
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
免费
0下载
2021年全国高考甲卷数学(理)试题(解析版).doc
2021年全国高考甲卷数学(理)试题(解析版).doc
免费
28下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料