2024年新高考数学复习资料重难点突破05 极值点偏移问题与拐点偏移问题(七大题型)(原卷版).docx本文件免费下载 【共17页】

2024年新高考数学复习资料重难点突破05 极值点偏移问题与拐点偏移问题(七大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破05 极值点偏移问题与拐点偏移问题(七大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破05 极值点偏移问题与拐点偏移问题(七大题型)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破05极值点偏移问题与拐点偏移问题目录1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。若函数f(x)在x=x0处取得极值,且函数y=f(x)与直线y=b交于A(x1,b),B(x2,b)两点,则AB的中点为M(x1+x22,b),而往往x0≠x1+x22。如下图所示。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com图1极值点不偏移图2极值点偏移极值点偏移的定义:对于函数y=f(x)在区间(a,b)内只有一个极值点x0,方程f(x)的解分别为x1、x2,且a<x1<x2<b,(1)若x1+x22≠x0,则称函数y=f(x)在区间(x1,x2)上极值点x0偏移;(2)若x1+x22>x0,则函数y=f(x)在区间(x1,x2)上极值点x0左偏,简称极值点x0左偏;(3)若x1+x22<x0,则函数y=f(x)在区间(x1,x2)上极值点x0右偏,简称极值点x0右偏。2、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x0.(2)构造函数,即根据极值点构造对称函数,若证,则令.(3)判断单调性,即利用导数讨论的单调性.(4)比较大小,即判断函数在某段区间上的正负,并得出与的大小关系.(5)转化,即利用函数的单调性,将与的大小关系转化为与之间的关系,进而得到所证或所求.【注意】若要证明的符号问题,还需进一步讨论与x0的大小,得出所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3、应用对数平均不等式证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到;③利用对数平均不等式来证明相应的问题.4、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.题型一:极值点偏移:加法型例1.(2023·河南周口·高二校联考阶段练习)已知函数,(1)若,求的单调区间;(2)若,,是方程的两个实数根,证明:.例2.(2023·河北石家庄·高三校联考阶段练习)已知函数.(1)求函数的单调区间;(2)若函数有两个零点、,证明.例3.(2023·广东深圳·高三红岭中学校考期末)已知函数.(1)讨论函数的单调性;(2)①证明函数(为自然对数的底数)在区间内有唯一的零点;②设①中函数的零点为,记(其中表示中的较小值),若小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在区间内有两个不相等的实数根,证明:.变式1.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知函数为其极小值点.(1)求实数的值;(2)若存在,使得,求证:.变式2.(2023·湖北武汉·高二武汉市第六中学校考阶段练习)已知函数,a为实数.(1)求函数的单调区间;(2)若函数在处取得极值,是函数的导函数,且,,证明:变式3.(2023·江西景德镇·统考模拟预测)已知函数(1)若函数在定义域上单调递增,求的最大值;(2)若函数在定义域上有两个极值点和,若,,求的最小值.变式4.(2023·全国·模拟预测)已知函数.(1)讨论函数的极值点的个数;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若函数恰有三个极值点、、,且,求的最大值.变式5.(2023·广西玉林·高二广西壮族自治区北流市高级中学校联考阶段练习)已知函数.(1)讨论函数f(x)的单调性;(2)当时,若,求证:变式6.(2023·...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2013年广东高考(理科)数学(原卷版).doc
2013年广东高考(理科)数学(原卷版).doc
免费
6下载
上海市松江区2020年高三第一学期期末(一模)数学答案 (1).docx
上海市松江区2020年高三第一学期期末(一模)数学答案 (1).docx
免费
0下载
2018年上海市静安区高考数学二模试卷.doc
2018年上海市静安区高考数学二模试卷.doc
免费
0下载
2024年新高考数学复习资料2024年高考数学二轮复习测试卷(新题型地区专用)(解析版).docx
2024年新高考数学复习资料2024年高考数学二轮复习测试卷(新题型地区专用)(解析版).docx
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2024年高考数学真题(新课标Ⅰ)(原卷版) (1).docx
2024年高考数学真题(新课标Ⅰ)(原卷版) (1).docx
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 22.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 22.docx
免费
9下载
2014年高考理科数学试题(天津卷)及参考答案.doc
2014年高考理科数学试题(天津卷)及参考答案.doc
免费
16下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
免费
0下载
2008年高考数学真题(文科)(安徽自主命题).doc
2008年高考数学真题(文科)(安徽自主命题).doc
免费
8下载
2015年高考数学试卷(理)(湖北)(解析卷).doc
2015年高考数学试卷(理)(湖北)(解析卷).doc
免费
0下载
2024年高考押题预测卷数学(全国卷理科02)(全解全析).docx
2024年高考押题预测卷数学(全国卷理科02)(全解全析).docx
免费
8下载
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷).pdf
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷).pdf
免费
0下载
精品解析:上海市崇明区2022届高考二模数学试题(解析版).docx
精品解析:上海市崇明区2022届高考二模数学试题(解析版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
2023年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
免费
0下载
2011年高考数学真题(理科)(四川自主命题).doc
2011年高考数学真题(理科)(四川自主命题).doc
免费
7下载
1997年宁夏高考理科数学真题及答案.doc
1997年宁夏高考理科数学真题及答案.doc
免费
9下载
2016年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
2016年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
免费
0下载
2025年新高考数学复习资料第03讲 二项式定理(十五大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第03讲 二项式定理(十五大题型)(讲义)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群