2024年新高考数学复习资料第02讲 三角恒等变换(九大题型)(讲义)(解析版).docx本文件免费下载 【共36页】

2024年新高考数学复习资料第02讲 三角恒等变换(九大题型)(讲义)(解析版).docx
2024年新高考数学复习资料第02讲 三角恒等变换(九大题型)(讲义)(解析版).docx
2024年新高考数学复习资料第02讲 三角恒等变换(九大题型)(讲义)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第02讲三角恒等变换目录考点要求考题统计考情分析(1)会推导两角差的余弦公式(2)会用两角差的余弦公式推导出两角差的正弦、正切公式(3)掌握两角和与差的正弦、余弦、正切公式,并会简单应用(4)能运用两角和与差的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式,并进行简单的恒等变换2023年II卷第7题,5分2023年I卷II卷第8题,5分2022年II卷第6题,5分2021年甲卷(文)第11题,5分三角恒等变换位于三角函数与数学变换的结合点上,高考会重综合推理侧能力和运算能力的考,体三角恒查现等变换的具性作用,以及会有一些工它们在数学中的应用.这就需要同学熟练运用公式,进一步高运用联系转化的观点去理问题提处的性,体会一般与特的思、自觉殊想换的思、方程的思等数学思元想想想在三角恒等变换中的作用.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点一.两角和与差的正余弦与正切①;②;③;知识点二.二倍角公式①;②;③;知识点三:降次(幂)公式知识点四:半角公式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点五.辅助角公式asinα+bcosα=√a2+b2sin(α+ϕ)(其中sinϕ=b√a2+b2,cosϕ=a√a2+b2,tanϕ=ba).题方结【解法总】1、两角和与差正切公式变形tanα±tanβ=tan(α±β)(1∓tanαtanβ);tanα⋅tanβ=1−tanα+tanβtan(α+β)=tanα−tanβtan(α−β)−1.2、降幂公式与幂公式升sin2α=1−cos2α2;cos2α=1+cos2α2;sinαcosα=12sin2α;1+cos2α=2cos2α;1−cos2α=2sin2α;1+sin2α=(sinα+cosα)2;1−sin2α=(sinα−cosα)2.3、用变式其他常sin2α=2sinαcosαsin2α+cos2α=2tanα1+tan2α;cos2α=cos2α−sin2αsin2α+cos2α=1−tan2α1+tan2α;tanα2=sinα1+cosα=1−cosαsinα.4、拆分角问题:①;;②;③;④;⑤.:注意特的角也看成已知角,如殊.题一:两角和与差公式的证明型例1.(浙江省绍兴市2022-2023学年高一下学期6月期末数学试题)为了推导两角和与差的三角函数公式,某同学设计了一种证明方法:在直角梯形ABCD中,,,点E为BC上一点,且,过点D作于点F,设,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)利用图中边长关系,证明:;(2)若,求.【解析】(1)在中,,,,则,在中,,,,则,在中,,,则,依题意,四边形是矩形,则,所以.(2)由及(1)知,,则,而为锐角,即有,,又是锐角,于是,所以.例2.(2023·辽宁·高一辽宁实验中学校考期中)某数学学习小组研究得到了以下的三倍角公式:①;②根据以上研究结论,回答:(1)在①和②中任选一个进行证明:(2)求值:.【解析】(1)若选①,证明如下:.若选②,证明如下:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.(2)由题,,因为,则,所以由公式②及正弦的二倍角公式得,又因为,所以,所以,整理得解得或,又,所以.例3.(2023·全国·高三专题练习)(1)试证明差角的余弦公式:;(2)利用公式推导:①和角的余弦公式,正弦公式,正切公式;②倍角公式,,.【解析】(1)不妨令.如图,设单位圆与轴的正半轴相交于点,以轴非负半轴为始边作角,它们的终边分别与单位圆相交于点,,.连接.若把扇形绕着点旋转角,则点分别与点重合.根据圆的旋转对称性可知,与重合,从而,=,∴.根据两点间的距离公式,得:,化简得:当时,上式仍然成立.,对于任意角∴有:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)①公式的推导:.公式的推导:正切公式的推导:②公式的推导:由①知,.公式的推导:由①知,.公式的推导:由①知,.变式1.(2023·全国·高三专题练习)如图,考虑点,,,,从这个图出发.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)推导公式:;(2)利用(1)的结果证明:,并计算的值.【解析】(1)因为,根据图象,可得,即,即.即.(2)由(1)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年重庆市高考数学试卷(文科).doc
2014年重庆市高考数学试卷(文科).doc
免费
0下载
2024年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
2024年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
免费
0下载
2024年新高考数学复习资料专题3.1 导数的概念及其几何意义与运算【八大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题3.1 导数的概念及其几何意义与运算【八大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
1992年高考数学真题(理科)(江苏自主命题).doc
1992年高考数学真题(理科)(江苏自主命题).doc
免费
4下载
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(教师版).docx
高中数学高考数学10大专题技巧--专题六 平面向量与三角函数(教师版).docx
免费
0下载
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
精品解析:江苏省海安高级中学、宿迁中学2023-2024学年高三下学期模拟考试数学试卷(解析版).docx
免费
0下载
高中数学 题库 高考易错题 理数(答案册).pdf
高中数学 题库 高考易错题 理数(答案册).pdf
免费
0下载
精品解析:江苏省四校联合2024届高三新题型适应性考试数学试题(解析版).docx
精品解析:江苏省四校联合2024届高三新题型适应性考试数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料“8+3+3”小题强化训练(8)(新高考九省联考题型)(原卷版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(8)(新高考九省联考题型)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(大纲版)(空白卷) (2).pdf
2011年高考数学试卷(理)(大纲版)(空白卷) (2).pdf
免费
0下载
2014年上海市长宁区高考数学一模试卷(理科).doc
2014年上海市长宁区高考数学一模试卷(理科).doc
免费
0下载
2011年海南省高考文科数学试题及答案.doc
2011年海南省高考文科数学试题及答案.doc
免费
7下载
2014年上海市闵行区高考数学二模试卷(文科).doc
2014年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
2009年高考数学试卷(文)(全国卷Ⅰ)(空白卷) (1).pdf
2009年高考数学试卷(文)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2015年安徽省高考数学试卷(理科)往年高考真题.doc
2015年安徽省高考数学试卷(理科)往年高考真题.doc
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (4).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (4).pdf
免费
0下载
专题07 解析几何(三大类型题综合)15区新题速递(解析版).docx
专题07 解析几何(三大类型题综合)15区新题速递(解析版).docx
免费
0下载
2017年高考数学试卷(江苏)(解析卷).pdf
2017年高考数学试卷(江苏)(解析卷).pdf
免费
0下载
高中数学·必修第三册·RJ-B课时作业(word)  详解答案.docx
高中数学·必修第三册·RJ-B课时作业(word) 详解答案.docx
免费
8下载
2022·微专题·小练习·数学·文科【统考版】专练18.docx
2022·微专题·小练习·数学·文科【统考版】专练18.docx
免费
3下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群