2024年新高考数学复习资料第04讲 解三角形(八大题型)(讲义)(原卷版).docx本文件免费下载 【共19页】

2024年新高考数学复习资料第04讲 解三角形(八大题型)(讲义)(原卷版).docx
2024年新高考数学复习资料第04讲 解三角形(八大题型)(讲义)(原卷版).docx
2024年新高考数学复习资料第04讲 解三角形(八大题型)(讲义)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第04讲解三角形目录考点要求考题统计考情分析(1)掌握正弦定理、余弦定理及其变形.(2)能利用正弦定理、余弦定理解决一些简单的三角形度量问题.(3)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.2023年I卷II卷第17题,10分2023年甲卷第16题,5分2023年乙卷第18题,12分2022年I卷II卷第18题,12分高考对的考不有大的变化,本节查会将以考正余弦定理的使用、仍查基本面积公式的应用为主.从近五年的全国卷的考情况看,是高考的查来本节点,主要以考正余弦定理的应用热查和面积公式为主.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点一:基本定理公式(1)正余弦定理:在△ABC中,角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理公式;;.常见变形(1),,;(2),,;;;.(2)面积公式:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(r是三角形内切圆的半径,并可由此计算R,r.)知识点二:相关应用(1)正弦定理的应用①边化角,角化边②大边对大角大角对大边③合分比:(2)内角和定理:①同理有:,.②;③斜三角形中,④;⑤在中,内角成等差数列.知识点三:实际应用(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(3)方向角:相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.(4)坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.解题方法【总结】1、方法技:解三角形多解情况巧在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式解的个数一解两解一解一解无解2、在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到.3、三角形中的射影定理在中,;;.题一:正弦定理的应用型例1.(2023·福建龙岩·高三校联考期中)在中,角所对的边分别为,若,则()A.B.C.D.例2.(2023·全国·高三专题练习)在中,设命题p:,命题q:是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件例3.(2023·河南·襄城高中校联考三模)在中,角A,B,C的对边分别为a,b,c,若小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com且,,则()A.B.C.8D.4变式1.(2023·全国·高三专题练习)在中,内角的对边分别是,若,且,则()A.B.C.D.变式2.(2023·河南郑州·高三郑州外国语中学校考阶段练习),,分别为内角,,的对边.已知,,则外接圆的面积为()A.B.C.D.变式3.(2023·甘肃兰州·高三兰州五十一中校考期中)△ABC的三个内角A,B,C所对的边分别为a,b,c,若,则()A.B.C.D.变式4.(2023·宁夏·高三六盘山高级中学校考期中)在中,内角A,B,C所对的边分别是a,b,c.若,则的值为()A.B.C.1D.变式5.(2023·河南·洛宁县第一高级中学校联考模拟预测)△ABC的内角A,B,C的对边分别为a,b,c,已知,,则c=()A.4B.6C.D.解...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群