2024年新高考数学复习资料重难点突破01 ω的取值范围与最值问题(六大题型)(解析版).docx本文件免费下载 【共31页】

2024年新高考数学复习资料重难点突破01 ω的取值范围与最值问题(六大题型)(解析版).docx
2024年新高考数学复习资料重难点突破01 ω的取值范围与最值问题(六大题型)(解析版).docx
2024年新高考数学复习资料重难点突破01 ω的取值范围与最值问题(六大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破01的取值范围与最值问题目录1、在区间内没有零点⇒¿{|b−a|≤T2¿{kπ≤aω+ϕ<π+kπ¿¿¿⇒¿{|b−a|≤T2¿{a≥kπ−ϕω¿¿¿同理,在区间内没有零点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com⇒¿{|b−a|≤T2¿{kπ<aω+ϕ<π+kπ¿¿¿⇒¿{|b−a|<T2¿{a>kπ−ϕω¿¿¿2、在区间内有个零点⇒¿{T<|b−a|≤2T¿{kπ≤aω+ϕ<π+kπ¿¿¿同理在区间内有个零点⇒¿{T2≤|b−a|<3T2¿{kπ<aω+ϕ≤π+kπ¿¿¿3、在区间内有个零点同理在区间内有个零点4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.5、已知单调区间,则.题型一:零点问题例1.(2023·全国·高三专题练习)设函数,若对于任意实数,函数在区间上至少有3个零点,至多有4个零点,则的取值范围是()A.B.C.D.【答案】C【解析】因为为任意实数,故函数的图象可以任意平移,从而研究函数在区间上的零点问题,即研究函数在任意一个长度为的区间上的零点问题,令,得,则它在轴右侧靠近坐标原点处的零点分别为,,,,,,则它们相邻两个零点之间的距离分别为,,,,,故相邻四个零点之间的最大距离为,相邻五个零点之间的距离为,所以要使函数在区间上至少有3个零点,至多有4个零点,则需相邻四个零点之间的最大距离不大于,相邻五个零点之间的距离大于,即,解得.故选:C例2.(2023·全国·高一专题练习)设函数,在区间上至少有2个不同的零点,至多有3个不同的零点,则的取值范围是()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】D【解析】函数,在区间上至少有2个不同的零点,至多有3个不同的零点,即在区间上至少有2个不同的根,至多有3个不同的根,,如图:①当,则,得无解;②当,则,求得;③当时,则,求得;④当时,区间长度超过了正弦函数的两个最小正周期长度,故方程在区间上至少有4个根,不满足题意;综上,可得或;故选:D.例3.(2023·河北·高二统考学业考试)设函数,若对于任意实数,在区间上至少有2个零点,至多有3个零点,则的取值范围是()A.B.C.D.【答案】B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】令,则令,则则问题转化为在区间上至少有两个,至少有三个t,使得,求的取值范围.作出和的图像,观察交点个数,可知使得的最短区间长度为2π,最长长度为,由题意列不等式的:解得:.故选:B变式1.(2023·全国·高三专题练习)已知函数的图象是由()的图象向右平移个单位得到的,若在上仅有一个零点,则的取值范围是().A.B.C.D.【答案】C【解析】由题知,函数在上仅有一个零点,所以,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,得,即.若第一个正零点,则(矛盾),因为函数在上仅有一个零点,所以,解得.故选:C.变式2.(2023·全国·高三专题练习)记函数的最小正周期为.若,为的零点,则的最小值为()A.2B.3C.4D.6【答案】C【解析】因为的最小正周期为,且,所以,因为,所以,所以,因为为的零点,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,解得,因为,所以的最小值为4,故选:C变式3.(2023·全国·模拟预测)若函数在上有3个零点,则的取值范围是()A.B.C.D.【答案】D【解析】令,则当时,,即,当时,,矛盾,所以,且,又,所以,且,所以.所以,因为,所以函数的正零点从小到大依次为:,,,,因为函数在上有3个零点,所以所以.故选:D.题型二:单调问题例4.(2023·四川成都·石室中学校考模拟预测)已知函数的图象关于点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对称,且在上单调,则的取值集合为()A.B.C.D.【答案】C【解析】关于点对称,所以,所以①;,而在上单调,所以,②;...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1991年高考数学真题(理科)(天津自主命题).doc
1991年高考数学真题(理科)(天津自主命题).doc
免费
9下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2002年广西高考文科数学真题及答案.doc
2002年广西高考文科数学真题及答案.doc
免费
25下载
高中数学高考数学10大专题技巧--专题三   三角函数的图象与性质(2)(教师版).docx
高中数学高考数学10大专题技巧--专题三 三角函数的图象与性质(2)(教师版).docx
免费
0下载
2015年广东高考(理科)数学(原卷版).doc
2015年广东高考(理科)数学(原卷版).doc
免费
18下载
2022年高考数学试卷(理)(全国甲卷)(空白卷) (1).pdf
2022年高考数学试卷(理)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年高考数学一轮复习(新高考版) 第4章 §4.5 三角函数的图象与性质.pptx
2024年高考数学一轮复习(新高考版) 第4章 §4.5 三角函数的图象与性质.pptx
免费
0下载
2009年高考数学试卷(理)(北京)(解析卷).pdf
2009年高考数学试卷(理)(北京)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料素养拓展20 累加、累乘、构造法求数列通项公式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展20 累加、累乘、构造法求数列通项公式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (8).docx
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (8).docx
免费
0下载
2018年北京市高考数学试卷(理科)往年高考真题.doc
2018年北京市高考数学试卷(理科)往年高考真题.doc
免费
0下载
高中2022·微专题·小练习·数学【新高考】专练43.docx
高中2022·微专题·小练习·数学【新高考】专练43.docx
免费
0下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2015年上海市金山区高考数学一模试卷.doc
2015年上海市金山区高考数学一模试卷.doc
免费
0下载
2006年新疆高考理科数学真题及答案.doc
2006年新疆高考理科数学真题及答案.doc
免费
20下载
2021年上海市杨浦区高考数学二模试卷.doc
2021年上海市杨浦区高考数学二模试卷.doc
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第3章 §3.5 利用导数研究恒(能)成立问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第3章 §3.5 利用导数研究恒(能)成立问题.docx
免费
0下载
2021届江苏省常州市前黄高级中学高三下学期学情检测(一)数学试题(解析版).docx
2021届江苏省常州市前黄高级中学高三下学期学情检测(一)数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
2025年新高考数学复习资料第一章 集合与常用逻辑用语、不等式(测试)(原卷版).docx
2025年新高考数学复习资料第一章 集合与常用逻辑用语、不等式(测试)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料