2024年新高考数学复习资料第02讲 平面向量的数量积及其应用(练习)(解析版).docx本文件免费下载 【共17页】

2024年新高考数学复习资料第02讲 平面向量的数量积及其应用(练习)(解析版).docx
2024年新高考数学复习资料第02讲 平面向量的数量积及其应用(练习)(解析版).docx
2024年新高考数学复习资料第02讲 平面向量的数量积及其应用(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第02讲平面向量的数量积及其应用(模拟精练+真题演练)1.(2023·湖南长沙·长沙市实验中学校考三模)已知向量(2,1),(,3),则向量在方向上的投影向量为()A.B.C.D.【答案】C【解析】因为向量(2,1),(,3),所以向量在方向上的投影向量为,故选:C2.(2023·北京·统考模拟预测)若向量,,则与的夹角等于()A.B.C.D.【答案】D【解析】,又因为,所以,即与的夹角等于.故选:D3.(2023·湖南长沙·雅礼中学校考模拟预测)已知向量,满足,且,,则()A.5B.3C.2D.1【答案】D【解析】,所以,故选:D4.(2023·广东深圳·统考模拟预测)若等边的边长为2,平面内一点满足,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com()A.B.C.D.【答案】C【解析】,,.故选:C.5.(2023·黑龙江哈尔滨·哈尔滨市第四中学校校考模拟预测)如图,已知的半径为2,,则()A.1B.-2C.2D.【答案】C【解析】由题知,为正三角形,所以,所以.故选:C6.(2023·新疆喀什·校考模拟预测)在当中,且,已知为边的中点,则().A.2B.C.D.【答案】D【解析】因为为边的中点,所以,即,而,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故,所以.故选:D7.(2023·山东菏泽·山东省鄄城县第一中学校考三模)已知向量,且满足,则向量在向量上的投影向量为()A.B.C.D.【答案】C【解析】因为,所以,得,所以,,所以向量在向量上的投影向量为.故选:C8.(2023·上海嘉定·上海市嘉定区第一中学校考三模)如图直线l以及三个不同的点A,,O,其中,设,,直线l的一个方向向量的单位向量是,下列关于向量运算的方程甲:,乙:,其中是否可以作为A,关于直线l对称的充要条件的方程(组),下列说法正确的是()A.甲乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲乙都不可以【答案】A【解析】对于方程甲:因为、为、在方向上的投影,可得表示点A,到直线l的距离相等,则点A,分别在关于直线l对称的平行线上,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为,可得,则,且,可得,所以A,关于直线l对称,反之也成立,故甲满足;对于乙:在中,因为,则为边的中线所在的直线,且点A在直线上的投影为的中点,所以A,关于直线l对称,反之也成立,故乙满足;故选:A.9.(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知非零向量,,满足,,,.则向量与的夹角()A.45°B.60°C.135°D.150°【答案】C【解析】 ,,∴. ,∴,,则,设向量与的夹角为,与反向,则.故选:C.10.(2023·重庆沙坪坝·重庆一中校考模拟预测)在中,点D,E满足,,且.若,则的可能值为()A.B.C.D.【答案】D【解析】依题意,作图如下,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由,可得,所以,即,也即,又因为,所以,所以,所以,当且仅当时取得等号,所以,所以结合选项的可能值为,故选:D.11.(多选题)(2023·广东梅州·大埔县虎山中学校考模拟预测)已知平面向量,,则下列说法正确的是()A.B.在方向上的投影向量为C.与垂直的单位向量的坐标为D.若向量与非零向量共线,则【答案】AD【解析】由题意知,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,因此A正确;在方向上的投影向量为,因此B错误;与垂直的单位向量的坐标为或,因此C错误;因为,,若向量与向量共线,则,解得,因此D正确.故选:AD.12.(多选题)(2023·广东珠海·珠海市第一中学校考模拟预测)已知,下列结论正确的是()A.与向量垂直且模长是2的向量是和B.与向量反向共线的单位向量是C.向量在向量上的投影向量是D.向量与向量所成的角是锐角,则的取值范围是【答案】BC【解析】对于A,向量的模不符合,故A不正确.对于B,向量的相反向量为,与相反向量同向的单位向量是,故B正确.对于C,向量在向量上的投影为,与向量同向的单位向量...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群