高中数学高考数学10大专题技巧--专题07 双曲线模型(学生版).docx.doc本文件免费下载 【共4页】

高中数学高考数学10大专题技巧--专题07 双曲线模型(学生版).docx.doc
高中数学高考数学10大专题技巧--专题07 双曲线模型(学生版).docx.doc
高中数学高考数学10大专题技巧--专题07 双曲线模型(学生版).docx.doc
专题07双曲线模型双曲线线秒杀小题常用结论(1)双曲线定义:||MF1|-|MF2||=2a(2a<|F1F2|).如图(10)图(10)图(11)图(12)(2)如图(11)双曲线的焦点到其渐近线的距离为b.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).(3)如图(12)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为,异支的弦中最短的为实轴,其长为2a;(4)如图(13)P是双曲线上不同于实轴两端点的任意一点,F1、F2分别为双曲线的左、右焦点,则S△PF1F2=b2,其中θ为∠F1PF2.图(13)图(14)(5)如图(14)双曲线-=1(a>0,b>0)的渐近线y=±x的斜率k=±与离心率e的关系:e==.(6)若P是双曲线右支上一点,F1、F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a;(7)如图(15)设P,A,B是双曲线-=1(a>b>0)上不同的三点,其中A,B关于原点对称,则kPA·kPB==e2-1.图(15)图(16)(8)如图(16)设A,B是双曲线-=1(a>b>0)上不同的两点,P为弦AB的中点,则kAB·kOP==e2-1.【例题选讲】[例2](9)过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有()A.1条B.2条C.3条D.4条(10)(2018·全国Ⅱ)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x(11)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO交双曲线C左支于点M,直线PF2交双曲线C右支于点N,若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的渐近线方程为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.y=±xB.y=±xC.y=±2xD.y=±2x(12)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=()A.3B.4C.5D.6(13)(2018·全国Ⅰ)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|等于()A.B.3C.2D.4(14)(2019·全国Ⅲ)双曲线C:-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.3【对点训练】9.过双曲线-=1(a>0,b>0)的右焦点F(1,0)作x轴的垂线,与双曲线交于A,B两点,O为坐标原点,若△AOB的面积为,则双曲线的渐近线方程为________.10.已知双曲线C:-=1(a,b>0)的右顶点A和右焦点F到一条渐近线的距离之比为1∶,则C的渐近线方程为()A.y=±xB.y=±xC.y=±2xD.y=±x11.双曲线-=1(a>0,b>0)的两条渐近线分别为l1,l2,F为其一个焦点,若F关于l1的对称点在l2上,则双曲线的渐近线方程为()A.y=±2xB.y=±xC.y=±3xD.y=±x12.已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P是双曲线上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为,则双曲线的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x13.已知F2,F1是双曲线-=1(a>0,b>0)的上、下两个焦点,过F1的直线与双曲线的上下两支分别交于点B,A,若△ABF2为等边三角形,则双曲线的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x14.已知F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是()A.x±y=0B.x±y=0C.x±2y=0D.2x±y=015.已知双曲线Γ:-=1(a>0,b>0)的右顶点为A,与x轴平行的直线交Γ于B,C两点,记∠BAC=θ,若Γ的离心率为,则()A.θ∈B.θ=C.θ∈D.θ=16.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=________.17.如图,双曲线的中心在坐标原点O,A,C分别是双曲线虚轴的上、下端点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则∠BDF的余弦值是________.18.过点P(4,2)作一直线AB与双曲线C:-y2=1相交于A,B两点,若P为AB的中点,则|AB|=()小学、初中、高中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题03 函数的最值(值域)求法(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题03 函数的最值(值域)求法(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(十六).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(十六).doc
免费
4下载
2015年山东省高考数学试卷(理科).doc
2015年山东省高考数学试卷(理科).doc
免费
1下载
2008年高考数学试卷(理)(全国卷Ⅱ)(解析卷) (2).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
2002年广东高考数学真题及答案.doc
2002年广东高考数学真题及答案.doc
免费
5下载
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷01(原卷版).docx
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷01(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题07 函数的基本性质(八大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题07 函数的基本性质(八大题型+模拟精练)(原卷版).docx
免费
0下载
2016年高考数学试卷(文)(浙江)(空白卷).pdf
2016年高考数学试卷(文)(浙江)(空白卷).pdf
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (9).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练105.docx
高中2024版考评特训卷·数学【新教材】考点练105.docx
免费
0下载
2004年海南高考理科数学真题及答案.doc
2004年海南高考理科数学真题及答案.doc
免费
20下载
2020年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
2020年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅰ).doc
2018年全国统一高考数学试卷(文科)(新课标ⅰ).doc
免费
0下载
2012年高考数学试卷(文)(四川)(空白卷).doc
2012年高考数学试卷(文)(四川)(空白卷).doc
免费
0下载
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
免费
0下载
2000年高考数学真题(文科)(天津自主命题).doc
2000年高考数学真题(文科)(天津自主命题).doc
免费
27下载
2024年新高考数学复习资料专题18 抛物线中的参数及范围问题(原卷版).docx
2024年新高考数学复习资料专题18 抛物线中的参数及范围问题(原卷版).docx
免费
0下载
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2017年高考数学试卷(文)(新课标Ⅰ)(解析卷) (7).pdf
2017年高考数学试卷(文)(新课标Ⅰ)(解析卷) (7).pdf
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (5).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (5).pdf
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群