精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx本文件免费下载 【共22页】

精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx
精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx
精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023学年第一学期质量监控高三数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合,,则________.【答案】【解析】【分析】根据交集直接计算即可.【详解】由题可知:,,所以故答案为:2.在复平面内,复数对应的点的坐标是,则的共轭复数=________.【答案】##【解析】【分析】根据复数的几何意义可得,结合共轭复数的概念即可求解.【详解】由题意知,该复数为,则.故答案为:.3.不等式的解集为_________.【答案】或【解析】【分析】将分式不等式转化成整式不等式,再利用一元二次不等式解法即可求得结果.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】根据分式不等式解法可知等价于,由一元二次不等式解法可得或;所以不等式的解集为或.故答案为:或4.双曲线的离心率为____.【答案】【解析】【详解】试题分析:由题意得:考点:双曲线离心率5.已知角,的终边关于原点O对称,则______.【答案】【解析】【分析】根据角,的终边关于原点O对称得,即可得到的值.【详解】角,的终边关于原点O对称,,.故答案为:.6.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,则图中的值______.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】【分析】根据茎叶图可求得两组数据的中位数,进而构造方程求得的值.【详解】由茎叶图可知:乙组数据的中位数为,甲、乙两组数据的中位数相同,甲组数据的中位数为,即,解得:.故答案为:.7.设圆台的上底面和下底面的半径分别为和,母线长为,则该该圆台的高为_________.【答案】【解析】【分析】作出圆台轴截面,求出轴截面的高,即得答案.【详解】作出圆台的轴截面,如图示为等腰梯形,梯形的高即为圆台的高,即高为,故答案为:8.从1,2,3,4,5这五个数中随机抽取两个不同的数,则所抽到的两个数的和大于6的概率为__________(结果用数值表示).【答案】##0.4【解析】【分析】求出所有的基本事件个数以及符合题意的基本事件个数,利用古典概型求概率即可.【详解】根据题意,从1,2,3,4,5这五个数中随机抽取两个不同的数共有,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所抽到两个数的和大于6共有,,,共4种,所以所抽到的两个数的和大于6的概率为.故答案为:9.已知函数()在区间上是严格增函数,且其图像关于点对称,则的值为________.【答案】或【解析】【分析】根据增函数和对称中心特征,求出范围,进而得到答案.【详解】因为,则,函数()在区间上是严格增函数,所以,即;又因为的图像关于点对称,则(),则(),所以(),解得(),结合,所以或.故答案为:或.10.若,则________.【答案】【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】采用赋值法,令即可求得结果.【详解】令,则,所以,故答案为:.11.若函数的图像关于直线对称,且该函数有且仅有7个零点,则的值为________.【答案】【解析】【分析】根据题意,求得的图形过点,得到的图象过点,结合,,联立方程组,求得的值,得出,再根据题意,得到必为函数的一个零点,结合,求得的值,即可求解.【详解】由函数,则函数的图形过点,因为函数的图象关于对称,则函数的图象过点,可得,且,可得,又由,且,可得,联立方程组,解得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,因为函数图像关于直线对称,且该函数有且仅有7个零点,则必为函数的一个零点,即,可得,解得,所以.故答案为:.12.已知平面向量、、满足,且,则的取值范围是________.【答案】.【解析】【分析】利用平面向量的坐标表示与数量积计算,结合双曲线的定义与性质计算即可.【详解】根据题意不妨设,为坐标原点,则,即点到的距离比到点的距离大2,根据双曲线的定义可知的轨迹为双曲线的一支,以2为长轴,4为焦距,则,小学、初中、...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群