高考数学专题19 解三角形大题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx本文件免费下载 【共69页】

高考数学专题19 解三角形大题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题19 解三角形大题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题19 解三角形大题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题19解三角形大题综合考点十年考情(2015-2024)命题趋势考点1求面积的值及范围或最值(10年7考)2024·北京卷、2023·全国甲卷、2023·全国乙卷2022·浙江卷、2019·全国卷、2017·全国卷2016·全国卷、2015·浙江卷、2015·全国卷2015·山东卷掌握正弦定理、余弦定理及其相关变形应用,会用三角形的面积公式解决与面积有关的计算问题,会用正弦定理、余弦定理等知识和方法解决三角形中的综合问题,会利用基本不等式和相关函数性质解决三角形中的最值及范围问题本节内容是新高考卷的必考内容,一般给以大题来命题、考查正余弦定理和三角形面积公式在解三角形中的应用,同时也结合三角函数及三角恒等变换等知识点进行综合考查,也常结合基本不等式和相关函数性质等知识点求解范围及最值,需重点复习。考点2求边长、周长的值及范围或最值(10年8考)2024·全国新Ⅱ卷、2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2022·全国新Ⅱ卷、2022·全国乙卷、2022·北京卷、2022·全国新Ⅰ卷、2020·全国卷、2020·全国卷、2018·全国卷、2017·全国卷、2017·山东卷2017·全国卷、2016·全国卷、2015·浙江卷2015·山东卷考点3求角和三角函数的值及范围或最值(10年10考)2024·天津卷、2023·天津卷、2022·天津卷、2021·天津卷、2021·全国新Ⅰ卷、2020·天津卷2020·浙江卷、2020·江苏卷、2019·江苏卷2019·北京卷、2019·全国卷、2018·天津卷2017·天津卷、2017·天津卷、2016·四川卷2016·浙江卷、2016·浙江卷、2016·天津卷2016·北京卷、2016·山东卷、2016·四川卷2016·江苏卷、2015·江苏卷、2015·天津卷2015·四川卷、2015·湖南卷、2015·湖南卷2015·全国卷考点4求三角形的高、中线、角平分线及其他线段长(10年几考)2023·全国新Ⅰ卷、2018·北京卷、2018·全国卷2015·安徽卷、2015·全国卷考点5三角形中的证明问题2022·全国乙卷、2021·全国新Ⅰ卷、2016·四川卷小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(10年4考)2016·浙江卷、2016·山东卷、2016·四川卷2015·湖南卷考点01求面积的值及范围或最值1.(2024·北京·高考真题)在中,内角的对边分别为,为钝角,,.(1)求;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.条件①:;条件②:;条件③:.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1);(2)选择①无解;选择②和③△ABC面积均为.【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得,结合(1)问答案即可排除;选择②,首先求出,再代入式子得,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;选择③,首先得到,再利用正弦定理得到,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;【详解】(1)由题意得,因为为钝角,则,则,则,解得,因为为钝角,则.(2)选择①,则,因为,则为锐角,则,此时,不合题意,舍弃;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com选择②,因为为三角形内角,则,则代入得,解得,,则.选择③,则有,解得,则由正弦定理得,即,解得,因为为三角形内角,则,则,则2.(2023·全国甲卷·高考真题)记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1)(2)【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【详解】(1)因为,所以,解得:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.3.(2023·全国乙卷·高考真题)在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.【答案】(1);(2).【分析】(1)首先由余弦定理求得边长的值为,然后由余弦定理可得,最后由同角三角函数基本关系可得;(2)由题意可得,则,据此即可求得的面...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2008年高考数学真题(江苏自主命题)(解析版).doc
2008年高考数学真题(江苏自主命题)(解析版).doc
免费
0下载
2025年新高考数学复习资料第04讲 基本不等式及其应用(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第04讲 基本不等式及其应用(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2018年高考数学试卷(理)(新课标Ⅰ)(解析卷) (4).pdf
2018年高考数学试卷(理)(新课标Ⅰ)(解析卷) (4).pdf
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
2023年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
2023年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
免费
0下载
2020年高考数学真题(理科)(广东自主命题)(解析版).docx
2020年高考数学真题(理科)(广东自主命题)(解析版).docx
免费
30下载
2010年浙江高考数学(理科)试卷(含答案).doc
2010年浙江高考数学(理科)试卷(含答案).doc
免费
13下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(十九).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(十九).docx
免费
8下载
2024年新高考数学复习资料热点1-1 集合与复数(8题型+满分技巧+限时检测)(原卷版).docx
2024年新高考数学复习资料热点1-1 集合与复数(8题型+满分技巧+限时检测)(原卷版).docx
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练10.docx
2022·微专题·小练习·数学·理科【统考版】专练10.docx
免费
14下载
黄金卷-备战2024年高考数学模拟卷(七省新高考)(解析版).docx
黄金卷-备战2024年高考数学模拟卷(七省新高考)(解析版).docx
免费
0下载
2012年上海高考文科数学试题及答案.doc
2012年上海高考文科数学试题及答案.doc
免费
25下载
2024年高考全国甲卷数学(理)真题.docx
2024年高考全国甲卷数学(理)真题.docx
免费
0下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  24.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 24.docx
免费
9下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(八).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(八).docx
免费
1下载
专题36不等式第五缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题36不等式第五缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
14下载
2022·微专题·小练习·数学·文科【统考版】专练28.docx
2022·微专题·小练习·数学·文科【统考版】专练28.docx
免费
23下载
2000年西藏高考文科数学真题及答案.doc
2000年西藏高考文科数学真题及答案.doc
免费
16下载
2024年新高考数学复习资料专题8.5 双曲线(原卷版).docx
2024年新高考数学复习资料专题8.5 双曲线(原卷版).docx
免费
0下载
2008年高考数学试卷(文)(全国卷Ⅱ)(空白卷) (5).pdf
2008年高考数学试卷(文)(全国卷Ⅱ)(空白卷) (5).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群