2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (9).docx本文件免费下载 【共27页】

2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (9).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (9).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (9).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023年全国新高考Ⅱ卷一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在复平面内,对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据复数的乘法结合复数的几何意义分析判断.【详解】因为,则所求复数对应的点为,位于第一象限.故选:A.2.设集合,,若,则().A.2B.1C.D.【答案】B【解析】【分析】根据包含关系分和两种情况讨论,运算求解即可.【详解】因为,则有:若,解得,此时,,不符合题意;若,解得,此时,,符合题意;综上所述:.故选:B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.种B.种C.种D.种【答案】D【解析】【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,根据组合公式和分步计数原理则不同的抽样结果共有种.故选:D.4.若为偶函数,则().A.B.0C.D.1【答案】B【解析】【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.【详解】因为为偶函数,则,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则().A.B.C.D.【答案】C【解析】【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.【详解】将直线与椭圆联立,消去可得,因为直线与椭圆相交于点,则,解得,设到的距离到距离,易知,则,,,解得或(舍去),故选:C.6.已知函数在区间上单调递增,则a的最小值为().小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.eC.D.【答案】C【解析】【分析】根据在上恒成立,再根据分参求最值即可求出.【详解】依题可知,在上恒成立,显然,所以,设,所以,所以在上单调递增,,故,即,即a的最小值为.故选:C.7.已知为锐角,,则().A.B.C.D.【答案】D【解析】【分析】根据二倍角公式(或者半角公式)即可求出.【详解】因为,而为锐角,解得:.故选:D.8.记为等比数列的前n项和,若,,则().A.120B.85C.D.【答案】C【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】方法一:根据等比数列的前n项和公式求出公比,再根据的关系即可解出;方法二:根据等比数列的前n项和的性质求解.【详解】方法一:设等比数列的公比为,首项为,若,则,与题意不符,所以;由,可得,,①,由①可得,,解得:,所以.故选:C.方法二:设等比数列的公比为,因为,,所以,否则,从而,成等比数列,所以有,,解得:或,当时,,即为,易知,,即;当时,,与矛盾,舍去.故选:C.【点睛】本题主要考查等比数列的前n项和公式的应用,以及整体思想的应用,解题关键是把握的关系,从而减少相关量的求解,简化运算.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则().A.该圆锥的体积为B.该圆锥的侧面积为C.D.的面积为【答案】AC【解析】【分析】根据圆锥的体积、侧面积判断A、B选项的正确性,利用二面角的知识判断C、D选项的正确性.【详解】依题意,,,所以,A选项,圆锥的体积为,A选项正确;B选项,圆锥的侧面积为,B选项错误;C选项,设是的中点,连接,则,所以是二面角的平面角,则,所以,故,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群