专题08 平面解析几何(解答题)(解析版).docx本文件免费下载 【共51页】

专题08 平面解析几何(解答题)(解析版).docx
专题08 平面解析几何(解答题)(解析版).docx
专题08 平面解析几何(解答题)(解析版).docx
1五年(2019-2023)年高考真题分项汇编专题08平面解析几何(解答题)平面解析几何在高考中考查比例较大,一般是1+1+1模式或者是2+1+1模式。在选题中,解析几何解答题中难度一般较大,计算量比较大.主要知识点是考点01椭圆及其性质考点02双曲线及其性质考点03抛物线及其性质考点01椭圆及其性质1.(2020年新高考全国卷Ⅱ数学(海南)·第21题)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为,(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.【答案】(1);(2)18.解析:(1)由题意可知直线AM的方程为:,即.当y=0时,解得,所以a=4,椭圆过点M(2,3),可得,解得b2=12.所以C的方程:.(2)设与直线AM平行的直线方程为:,如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.2联立直线方程与椭圆方程,可得:,化简可得:,所以,即m2=64,解得m=±8,与AM距离比较远的直线方程:,直线AM方程为:,点N到直线AM的距离即两平行线之间的距离,利用平行线之间的距离公式可得:,由两点之间距离公式可得.所以△AMN的面积的最大值:.2.(2020江苏高考·第18题)在平面直角坐标系中,已知椭圆的左、右焦点分别为,点在椭圆上且在第一象限内,,直线与椭圆相交于另一点.3(1)求的周长;(2)在轴上任取一点,直线与椭圆的右准线相交于点,求的最小值;(3)设点在椭圆上,记与的面积分别为,若,求点的坐标.【答案】【答案】(1);(2);(3)或.【解析】(1) 椭圆的方程为,,由椭圆定义可得:.的周长为(2)设,根据题意可得. 点在椭圆上,且在第一象限,, 准线方程为,,,当且仅当时取等号.的最小值为.(3)设,点到直线的距离为.,∴直线的方程为, 点到直线的距离为,,,①②,∴联立①②解得,.或.43.(2020年高考课标Ⅲ卷理科·第20题)已知椭圆的离心率为,,分别为的左、右顶点.(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.【答案】(1);(2).解析:(1),,根据离心率,解得或(舍),的方程为:,即;(2)不妨设,在x轴上方点在上,点在直线上,且,,过点作轴垂线,交点为,设与轴交点为根据题意画出图形,如图,,,又,,,5根据三角形全等条件“”,可得:,,,,设点为,可得点纵坐标为,将其代入,可得:,解得:或,点为或,①当点为时,故,,,可得:点为,画出图象,如图,,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:,根据两点间距离公式可得:,面积为:;6②当点为时,故,,,可得:点为,画出图象,如图,,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:,根据两点间距离公式可得:,面积为:,综上所述,面积为:.5.(2023年北京卷·第19题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,.(1)求的方程;(2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点.求证:.【答案】(1)(2)证明见解析7解析:(1)依题意,得,则,又分别为椭圆上下顶点,,所以,即,所以,即,则,所以椭圆的方程为.(2)因为椭圆的方程为,所以,因为为第一象限上的动点,设,则,易得,则直线的方程为,,则直线的方程为,联立,解得,即,而,则直线的方程为,令,则,解得,即,又,则,,所以8,又,即,显然,与不重合,所以.6.(2023年天津卷·第18题)设椭圆的左右顶点分别为,右焦点为,已知.(1)求椭圆方程及其离心率;(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.【答案】(1)椭圆的方程为,离心率为.(2).解析:(1)如图,由题意得,解得,所以,所以椭圆的方程为,离心率为.(2)由题意得,直线斜率存在,由椭圆的方程为可得,设直线的方程为,9联立方程组,消去整理得:,由韦达定理得,所以,所以,.所以,,,所以,所以,即,解得,所以直线的方程为.7.(2022高考北京卷·第19题)已知椭圆:的一个顶点为,焦距为.(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.【答案】解析:...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
免费
30下载
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
免费
0下载
1996年北京高考理科数学真题及答案.doc
1996年北京高考理科数学真题及答案.doc
免费
25下载
2015年高考数学试卷(文)(陕西)(解析卷).doc
2015年高考数学试卷(文)(陕西)(解析卷).doc
免费
0下载
2006年重庆高考理科数学真题及答案.doc
2006年重庆高考理科数学真题及答案.doc
免费
12下载
高中2024版考评特训卷·数学【新教材】考点练63.docx
高中2024版考评特训卷·数学【新教材】考点练63.docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
免费
0下载
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
免费
0下载
专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
免费
0下载
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
免费
5下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十四).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十四).docx
免费
12下载
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
免费
0下载
2023年上海高考数学真题及答案 .docx
2023年上海高考数学真题及答案 .docx
免费
28下载
1999年广东高考文科数学真题及答案.doc
1999年广东高考文科数学真题及答案.doc
免费
8下载
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
免费
19下载
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群