专题06 立体几何(解答题)(原卷版).docx本文件免费下载 【共10页】

专题06 立体几何(解答题)(原卷版).docx
专题06 立体几何(解答题)(原卷版).docx
专题06 立体几何(解答题)(原卷版).docx
1五年(2019-2023)年高考真题分项汇编专题05立体几何(解答题)立体几何在理科数解答题中一般出现在20题左右的位置。主要考查空间几何体对应的空间角问题,考查二面角的频率比较大。1.(2023·全国·新课标Ⅰ卷)如图,在正四棱柱中,.点分别在棱,上,.(1)证明:;(2)点在棱上,当二面角为时,求.2.(20203全国·统考新课标Ⅱ卷)如图,三棱锥中,,,2,E为BC的中点.(1)证明:;(2)点F满足,求二面角的正弦值.3.(2023·全国·统考高考乙卷)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.34.(2023·全国·统考高考甲卷)如图,在三棱柱中,底面ABC,,到平面的距离为1.(1)证明:;(2)已知与的距离为2,求与平面所成角的正弦值.5.(2022·全国·统考高考乙卷)如图,四面体中,,E为的中点.(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.46.(2022·全国·统考高考甲卷)在四棱锥中,底面.(1)证明:;(2)求PD与平面所成的角的正弦值.7.(2022·全国·新课标Ⅰ卷)如图,直三棱柱的体积为4,的面积为.(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.58.(2022全国·统考新课标Ⅱ卷)如图,是三棱锥的高,,,E是的中点.(1)证明:平面;(2)若,,,求二面角的正弦值.9.(2021·全国·统考高考乙卷)如图,四棱锥的底面是矩形,底面,,为的中点,且.(1)求;(2)求二面角的正弦值.610.(2021·全国·统考高考甲卷)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.(1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?11.(2021·全国·新课标Ⅰ卷)如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.712.(2021全国·统考新课标Ⅱ卷)在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.13.(2020·全国·Ⅰ卷)如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)证明:平面;(2)求二面角的余弦值.814.(2020·全国·新课标Ⅰ卷)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.15.(2020全国·统考新课标Ⅱ卷)如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为.(1)证明:平面PDC;(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值.916.(2020全国·统考新课标Ⅱ卷)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.17.(2019·全国·统考Ⅰ卷)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.1018.(2019全国·统考Ⅱ卷)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
免费
30下载
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
免费
0下载
1996年北京高考理科数学真题及答案.doc
1996年北京高考理科数学真题及答案.doc
免费
25下载
2015年高考数学试卷(文)(陕西)(解析卷).doc
2015年高考数学试卷(文)(陕西)(解析卷).doc
免费
0下载
2006年重庆高考理科数学真题及答案.doc
2006年重庆高考理科数学真题及答案.doc
免费
12下载
高中2024版考评特训卷·数学【新教材】考点练63.docx
高中2024版考评特训卷·数学【新教材】考点练63.docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
免费
0下载
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
免费
0下载
专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
免费
0下载
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
免费
5下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十四).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十四).docx
免费
12下载
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
免费
0下载
2023年上海高考数学真题及答案 .docx
2023年上海高考数学真题及答案 .docx
免费
28下载
1999年广东高考文科数学真题及答案.doc
1999年广东高考文科数学真题及答案.doc
免费
8下载
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
免费
19下载
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群