小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06几何最值四大模型模型一:轴对称最值模型模型二:直角之最值模型模型三:费马点最值模型模型四:面积法求定值模型一:将军饮马问题1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小..2已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com模型二:费马点【费马点问题】问题:如图1,如何找点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?图文解析:如图1,把△APC绕C点顺时针旋转60°得到△A′P′C,连接PP′.则△CPP′为等边三角形,CP=PP′,PA=P′A′,∴PA+PB+PC=P′A′+PB+PP′BC′.点 A′可看成是线段CA绕C点顺时针旋转60°而得的定点,BA′为定长∴当B、P、P′、A′四点在同一直线上时,PA+PB+PC最小.最小值为BA.′【如图1和图2,利用旋转、等边等条件转化相等线段.】∴∠APC=A′P′C=180°-CP′P=180°-60°=120°∠∠,∠BPC=180°-P′PC=180°-60°=120°∠,∠APC=360°-BPC-APC=360°-120°-120°=120°.∠∠因此,当△ABC的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费马点问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.【方法总结】利用旋转、等边等条件转化相等线段,将三条线段转化成首尾相连的三条线段.【知识应用】两点之间线段最短.模型一:轴对称最值模型1.(春•庐江县期末)如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=4,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.4B.2C.2D.82.(2022•埇桥区校级月考)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A.2B.2C.4D.43.(2022春•裕华区校级期末)如图,在菱形ABCD中,∠D=135°,AD=3,CE=2,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值()A.2B.3C.2D.4.(2023•西乡塘区校级模拟)如图,在边长为的4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE=CF,连接BF、DE,则BF+DE的最小值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.5.(2023•烟台一模)如图,在矩形ABCD中,AB=12,AD=10,点E在AD上,点F在BC上,且AE=CF,连结CE,DF,则CE+DF的最小值为()A.26B.25C.24D.22模型二:直角之最值模型6.(2023春•河东区期中)如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为()A.5B.3.6C.2.4D.4.87.(2022秋•泰山区校级期末)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=2,则GH的最小值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.8.(2023秋•石景山区期末)如图,E是正方形ABCD内一点,满足∠AEB=90°,连接CE.若AB=2,则CE长的最小值为.9.(2023秋•洪洞县期中)如图,在△ABC中,AB=BC=10,AC=12,点D,E分别是AB,BC边上的动点,连结DE,F,M分别是AD,DE的中点,则FM的最小值为()A.12B.10C.9.6D.4.810.(2023秋•...