2024年高考押题预测卷数学(北京卷01)(全解全析).docx本文件免费下载 【共17页】

2024年高考押题预测卷数学(北京卷01)(全解全析).docx
2024年高考押题预测卷数学(北京卷01)(全解全析).docx
2024年高考押题预测卷数学(北京卷01)(全解全析).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2024年高考押题预测卷01【北京卷】数学·全解全析第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12345678910AAAADBCDAB1.【答案】A【分析】根据补集的定义可得出集合.【详解】集合,,则.故选:A.2.【答案】A【分析】对方程进行等价转化,即可进行判断.【详解】因为,故可得或,则“”是“”的充分不必要条件.故选:A.3.【答案】A【分析】根据题意,结合抛物线的几何性质,即可求解.【详解】由抛物线,可得抛物线的开口向上,且,所以,所以抛物线的焦点坐标为.故选:A.4.【答案】A【分析】利用复数除法计算出,从而得到,求出答案.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】,则,解得,则,故共轭复数对应的坐标为.故选:A5.【答案】D【分析】利用任意角的三角函数的定义求出,再用诱导公式化简即可求得结果.【详解】因为角的终边经过点,,则,所以.故选:D.6.【答案】B【分析】令,则由可得,所以数列是以为首项,2为公比的等比数列,可得到,然后用累加法得到,通过的单调性即可求出的最大值【详解】由,得,令,所以,则,所以数列是以为首项,2为公比的等比数列,所以,即,即,由,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com将以上个等式两边相加得,所以,经检验满足上式,故当时,,即单调递增,当时,,即单调递减,因为,所以的前项和的最大值为,故选:B7.【答案】C【分析】由题意可得,圆的圆心为,半径为1,结合是等腰直角三角形,可得圆心到直线的距离等于,再利用点到直线的距离公式,从而可求得的值.【详解】解:由题意得,圆的圆心为,半径为1,由于直线与圆相交于,两点,且为等腰直角三角形,可知,,所以,∴圆心到直线的距离等于,再利用点到直线的距离公式可得:圆心到直线的距离,解得:,所以实数的值为1或-1.故选:C.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.【答案】D【分析】先将改写为,再利用函数的单调性判断即可【详解】由题,,对于指数函数可知在上单调递增,因为,所以,即故选:D9.【答案】A【分析】求出渐近线方程,由点到直线的距离公式求出圆心到渐近线的距离,将此距离和半径作比较,得出结论.【详解】双曲线的渐近线为,圆,即,圆心到直线的距离为(半径),故渐近线与圆相切,故选A.10.【答案】B【解析】由题意可得,结合函数的单调性,从而可以判断,即在上单调递增,从而判断出结果.【详解】因为,是定义在上的增函数,,所以,即,所以,所以函数在上单调递增,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当时,,而,所以此时,当时,,而,所以此时,结合选项,可知对于任意,故选B.第二部分(非选择题共110分)二、填空题:本题共5小题,每小题5分,共25分。11.【答案】15【详解】试题分析:的展开式的通项,令可得,则常数项为.12.【答案】【分析】先计算出,然后再求解从而求解.【详解】由题意得,所以.故答案为:.13.【答案】【详解】试题分析:因为,所以14.【答案】3【分析】利用角的关系以及三角恒等变换相关公式将条件中的恒等式化简,即可求出角,然后利用面积公式得到,结合余弦定理以及基本不等式,即可求出的最小值.【详解】因为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com而,代入上式化简得:所以,因为,所以;因为,所以得;因为,所以,当且仅当时取等号,所以的最小值为3.15.【答案】...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料