高考数学复习 重难点专题 1-2 抽象函数的赋值计算与模型总结【15类题型】(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用) .docx本文件免费下载 【共54页】

高考数学复习  重难点专题 1-2 抽象函数的赋值计算与模型总结【15类题型】(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用) .docx
高考数学复习  重难点专题 1-2 抽象函数的赋值计算与模型总结【15类题型】(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用) .docx
高考数学复习  重难点专题 1-2 抽象函数的赋值计算与模型总结【15类题型】(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用) .docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点专题1-2抽象函数的赋值计算与模型总结近5年考情(2020-2024)考题统计考点分析考点要求2023年新高考1卷,第11题赋值法判断抽象函数的奇偶性,周期性(1)熟悉常见函数的抽象表达式(2)用赋值法判断抽象函数性质2022年新高考2卷,第8题【题型1】抽象函数的赋值计算求值【题型2】抽象函数的奇偶性【题型3】抽象函数的单调性【题型4】抽象函数的最值与值域点型解(目)热题读录模一块小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【题型5】抽象函数的对称性【题型6】抽象函数的周期性【题型7】一次函数的抽象表达式【题型8】对数型函数的抽象表达式【题型9】指数型函数的抽象表达式【题型10】幂函数的抽象表达式【题型11】正弦函数的抽象表达式【题型12】余弦函数的抽象表达式【题型13】正切函数的抽象表达式【题型14】二次函数的抽象表达式【题型15】其它函数的抽象表达式【题型1】抽象函数的赋值计算求值赋值法是求解抽象函数问题最基本的方法,一般有以下几种:1、……-2,-1,0,1,2……等特殊值代入求解2024·长沙市第一中适应性训练1.已知定义域为的函数,满足,且,,则________.【答案】0核心型题·一反三举(讲与练)模二块小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】由,令,则2.(2024·福建龙岩·一模)已知函数的定义域为,且,,则________【答案】2【详解】令,得得或,当时,令得不合题意,故【巩固练习1】定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(3)=,f(-3)=.【详解】f(1+1)=f(1)+f(1)+2=6,f(2+1)=f(2)+f(1)+4=12易知f(0)=0,f(-1+1)=f(-1)+f(1)-2f(-1)=0f(-2)=2f(-1)+2=2f(-3)=f(-2)+f(-1)+4=6【巩固练习2】已知对所有的非负整数均有,若,则______.【答案】31【解析】令,则,可得,当时,令,令,令,,则,可得,所以,令,,则,可得【巩固练习3】(2024·安徽合肥·一模)已知函数的定义域为,且小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,记,则()A.B.C.D.【答案】A【分析】根据函数满足的表达式以及,利用赋值法即可计算出的大小.【详解】由可得,令,代入可得,即,令,代入可得,即,令,代入可得,即;由可得,显然可得.【题型2】抽象函数的奇偶性证明奇偶性:利用定义和赋值的方法找到与的关系2024·福建莆田·二模3.已知定义在上的函数满足:,证明:是奇函数【详解】定义域为,关于原点对称;对原式,令,可得,解得;对原式,令,可得,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故是奇函数2024·长沙市第一中适应性训练4.已知定义域为的函数,满足,且,,证明:是偶函数【详解】令,则①,知函数关于点成中心对称,令,则,令,则②,由①可得:③,由①②可知:,且函数的定义域为,则函数是偶函数【巩固练习1】(多选)定义在上的函数满足:对任意的,则下列结论一定正确的有()A.B.C.为上的增函数D.为奇函数【答案】ABD【思路点拨】对于A:令,结合题意运算求解;对于D:令,根据题意结合奇函数的定义分析判断;对于B:根据奇函数的定义分析判断;对于C:举反例分析判断.【详解】因为对任意的,对于选项A:令,则,解得,故A正确;对于选项C:令,则,可得,且的定义域为,所以为奇函数,故D正确;对于选项B:因为为奇函数,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《微专题》·数学·新高考专练 52.docx
2024版《微专题》·数学·新高考专练 52.docx
免费
8下载
高中2024版《微专题》·数学·新高考专练 4.docx
高中2024版《微专题》·数学·新高考专练 4.docx
免费
0下载
2008年高考数学试卷(理)(四川)(延考区)(解析卷).doc
2008年高考数学试卷(理)(四川)(延考区)(解析卷).doc
免费
0下载
高中数学高考数学10大专题技巧--专题二 函数的解析式与分段函数(教师版).docx
高中数学高考数学10大专题技巧--专题二 函数的解析式与分段函数(教师版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (7).docx
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (7).docx
免费
0下载
高中2024版《微专题》·数学(文)·统考版专练 19.docx
高中2024版《微专题》·数学(文)·统考版专练 19.docx
免费
0下载
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版).doc
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版).doc
免费
0下载
二轮专项分层特训卷··高三数学·理科主观题专练 (12).doc
二轮专项分层特训卷··高三数学·理科主观题专练 (12).doc
免费
27下载
高中数学高考数学10大专题技巧--专题十八 函数的零点问题(5)(教师版).docx
高中数学高考数学10大专题技巧--专题十八 函数的零点问题(5)(教师版).docx
免费
0下载
2017年山东省高考数学试卷(文科).doc
2017年山东省高考数学试卷(文科).doc
免费
0下载
2015年高考数学试卷(理)(天津)(空白卷).pdf
2015年高考数学试卷(理)(天津)(空白卷).pdf
免费
0下载
2014年全国统一高考数学试卷(文科)(新课标ⅰ).doc
2014年全国统一高考数学试卷(文科)(新课标ⅰ).doc
免费
0下载
2012年高考数学试卷(理)(山东)(空白卷).doc
2012年高考数学试卷(理)(山东)(空白卷).doc
免费
0下载
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷03(测试范围:集合不等式函数+三角+导数+平面向量+复数)(解析版).docx
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷03(测试范围:集合不等式函数+三角+导数+平面向量+复数)(解析版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 38.docx
高中2024版《微专题》·数学·新高考专练 38.docx
免费
0下载
2021年上海市静安区高考数学二模试卷.doc
2021年上海市静安区高考数学二模试卷.doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (6).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (6).pdf
免费
0下载
精品解析:江苏省宿迁市2024届高三下学期调研测试数学试题(原卷版).docx
精品解析:江苏省宿迁市2024届高三下学期调研测试数学试题(原卷版).docx
免费
0下载
精品解析:江苏省南通市如皋市2024届高三上学期1月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三上学期1月诊断测试数学试题(原卷版).docx
免费
0下载
2007年高考数学真题(文科)(安徽自主命题).doc
2007年高考数学真题(文科)(安徽自主命题).doc
免费
23下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料