高考数学复习 第06练 函数的概念与表示(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共44页】

高考数学复习  第06练 函数的概念与表示(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
高考数学复习  第06练 函数的概念与表示(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
高考数学复习  第06练 函数的概念与表示(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第06练函数的概念与表示(精练)1.了解构成函数的要素,能求简单函数的定义域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.一、填空题1.(2023·北京·高考真题)已知函数,则.【答案】1【分析】根据给定条件,把代入,利用指数、对数运算计算作答.【详解】函数,所以.故答案为:12.(2022·浙江·高考真题)已知函数则;若当时,,则的最大值是.【答案】/【分析】结合分段函数的解析式求函数值,由条件求出的最小值,的最大值即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】由已知,,所以,当时,由可得,所以,当时,由可得,所以,等价于,所以,所以的最大值为.故答案为:,.3.(2022·北京·高考真题)设函数若存在最小值,则a的一个取值为;a的最大值为.【答案】0(答案不唯一)1【分析】根据分段函数中的函数的单调性进行分类讨论,可知,符合条件,不符合条件,时函数没有最小值,故的最小值只能取的最小值,根据定义域讨论可知或,解得.【详解】解:若时,,∴;若时,当时,单调递增,当时,,故没有最小值,不符合题目要求;若时,当时,单调递减,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,∴或,解得,综上可得;故答案为:0(答案不唯一),14.(2022·北京·高考真题)函数的定义域是.【答案】【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【详解】解:因为,所以,解得且,故函数的定义域为;故答案为:5.(2021·浙江·高考真题)已知,函数若,则.【答案】2【分析】由题意结合函数的解析式得到关于的方程,解方程可得的值.【详解】,故,故答案为:2.【A级基础巩固练】06讲A组2.0小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一、单选题1.(23-24高一下·山西临汾·阶段练习)的定义域为()A.B.C.D.【答案】B【分析】根据具体函数定义域的要求列不等式组求解.【详解】要使函数有意义,必须满足,解得,函数的定义域为.故选;B.2.(23-24高二下·河北承德·开学考试)下列函数中,表示同一函数的是()A.B.C.D.【答案】C【分析】从函数的定义域和对应法则两个方面是否都相同考查函数即得.【详解】对于A项,,与的对应法则不同,故不是同一函数,A项错误;对于B项,的定义域为的定义域为,故两函数定义域不同,故与不是同一函数,B项错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于C项,与的定义域相同,对应法则也相同,C项正确;对于项,,与的对应法则不同,故不是同一函数,D项错误.故选:C.3.(2024·安徽·模拟预测)已知,,则().A.B.C.D.【答案】B【分析】根据函数定义域和值域的求法可分别确定集合,由交集定义可得结果.【详解】由得:或,即;,,即,.故选:B.4.(23-24高一下·江西南昌·期中)函数的定义域为()A.B.C.D.【答案】D【分析】根据函数的定义列出不等式解得即可.【详解】根据题意得,解得小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即.故选:D.5.(23-24高一下·广东广州·期中)已知函数,若,则实数的取值范围是()A.B.C.D.【答案】A【分析】结合二次函数性质判断函数的单调性,再借助单调性求解不...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《微专题》·数学·新高考专练 52.docx
2024版《微专题》·数学·新高考专练 52.docx
免费
8下载
高中2024版《微专题》·数学·新高考专练 4.docx
高中2024版《微专题》·数学·新高考专练 4.docx
免费
0下载
2008年高考数学试卷(理)(四川)(延考区)(解析卷).doc
2008年高考数学试卷(理)(四川)(延考区)(解析卷).doc
免费
0下载
高中数学高考数学10大专题技巧--专题二 函数的解析式与分段函数(教师版).docx
高中数学高考数学10大专题技巧--专题二 函数的解析式与分段函数(教师版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (7).docx
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (7).docx
免费
0下载
高中2024版《微专题》·数学(文)·统考版专练 19.docx
高中2024版《微专题》·数学(文)·统考版专练 19.docx
免费
0下载
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版).doc
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版).doc
免费
0下载
二轮专项分层特训卷··高三数学·理科主观题专练 (12).doc
二轮专项分层特训卷··高三数学·理科主观题专练 (12).doc
免费
27下载
高中数学高考数学10大专题技巧--专题十八 函数的零点问题(5)(教师版).docx
高中数学高考数学10大专题技巧--专题十八 函数的零点问题(5)(教师版).docx
免费
0下载
2017年山东省高考数学试卷(文科).doc
2017年山东省高考数学试卷(文科).doc
免费
0下载
2015年高考数学试卷(理)(天津)(空白卷).pdf
2015年高考数学试卷(理)(天津)(空白卷).pdf
免费
0下载
2014年全国统一高考数学试卷(文科)(新课标ⅰ).doc
2014年全国统一高考数学试卷(文科)(新课标ⅰ).doc
免费
0下载
2012年高考数学试卷(理)(山东)(空白卷).doc
2012年高考数学试卷(理)(山东)(空白卷).doc
免费
0下载
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷03(测试范围:集合不等式函数+三角+导数+平面向量+复数)(解析版).docx
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷03(测试范围:集合不等式函数+三角+导数+平面向量+复数)(解析版).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 38.docx
高中2024版《微专题》·数学·新高考专练 38.docx
免费
0下载
2021年上海市静安区高考数学二模试卷.doc
2021年上海市静安区高考数学二模试卷.doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (6).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (6).pdf
免费
0下载
精品解析:江苏省宿迁市2024届高三下学期调研测试数学试题(原卷版).docx
精品解析:江苏省宿迁市2024届高三下学期调研测试数学试题(原卷版).docx
免费
0下载
精品解析:江苏省南通市如皋市2024届高三上学期1月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三上学期1月诊断测试数学试题(原卷版).docx
免费
0下载
2007年高考数学真题(文科)(安徽自主命题).doc
2007年高考数学真题(文科)(安徽自主命题).doc
免费
23下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料