一.选择题(共10小题)1.如图,在RtABC△中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°2.将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60B.120C.180D.3603.如图,在RtABC△中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.34.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.5.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.1﹣D.16.如图,在RtABC△中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DCAB∥,则∠BAE等于()A.30°B.40°C.50°D.60°8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′AB∥,则∠BAB′的度数是()A.70°B.35°C.40°D.50°9.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到BAE△,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AEBC∥B.ADE=BDC∠∠C.BDE△是等边三角形D.ADE△的周长是910.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)二.填空题(共9小题)11.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.14.如图,等腰RtABC△中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comP3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16.分解因式:x3y2x﹣2y+xy=.17.已知x2x1=0﹣﹣,则代数式﹣x3+2x2+2010的值为.18.若x29=﹣(x3﹣)(x+a),则a=.19.分解因式:9a230a+25=﹣.三.解答题(共11小题)20.如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DEAB⊥于点E,DFAC⊥于点F,求证:ADEF⊥.21.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com23.如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=C∠,④∠BAE=CDE∠.已知:求证:△AED是等腰三角形.证明:24.如图,CD为RtABC△斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FGAB⊥,垂足为G,求证:CE=FG.25.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C...