小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题10一般的一元二次方程的解法(提高)【目标导向】1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程;2.掌握运用配方法和公式法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力.培养学生数学推理的严密性及严谨性,渗透分类的思想.【知识点梳理】要点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()aabbab.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.要点三、公式法解一元二次方程1.一元二次方程的求根公式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20(0)axbxca,用配方法将其变形为:2224()24bbacxaa①当240bac时,右端是正数.因此,方程有两个不相等的实根:21,242bbacxa②当240bac时,右端是零.因此,方程有两个相等的实根:1,22bxa③当240bac时,右端是负数.因此,方程没有实根.【培优精讲例题】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com类型一、用配方法解一元二次方程1.(天门模拟)用配方法解方程:.【答案与解析】解: ,∴∴,∴∴.【总结升华】原方程的二次项系数不为1,必须先化成1,才能配方.配方时,方程左右两边同时加上一次项系数一半的平方,配成20xmnn≥的形式,然后用直接开平方法求解即可.举一反三:【变式】用配方法解方程(1)2x2+3=5x(2)20xpxq【答案】(1)2235xx2253xx25322xx2225535()()2424xx251()416x5144x123,12xx.(2)20xpxq小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com222()()22ppxpxq224()24ppqx①当24...