小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第17讲函数的表示法掌握函数的三个表示法重点是实际问题的函数表示法难点是数形结合思想的应用的归纳总结模块一:解析法1、解析法:用等式来表示一个变量与另一个变量之间函数关系的方法,这个等式称为函数的解析式(或函数关系式).简单明了,能从解析式了解函数与自变量之间的关系,便于理论上的分析与研究,但求对应值时需要逐个计算,且有的函数无法用解析式表示.【例1】填空:两个变量之间的依赖关系用____________来表达,这种表示函数的方法叫做解析法;【例2】若某人以每分钟100米速度匀速行走,那么用行走的时间x(分)表示行走的路程y(米)的解析式为______________,这样行走20公里需要__________小时.【例3】两个变量x、y满足:,则用变量x来表示变量y的解析式为________________.【例4】收割机的油箱里盛油65,使用时,平均每小时耗油6(1)如果收割机工作了4小时,那么油箱还剩多少千克的油?(2)如果油箱里用掉36千克油,那么使用收割机工作的时间为多少小时?(3)写出油箱里剩下的油与使用收割机时间之间的函数关系式?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(4)在此函数关系式中,求函数定义域.模块二:列表法1、列表法:用表格形式来表示一个变量与另一个变量之间函数关系的方法;从表格中直接找到自变量对应的函数值,查找方便,但无法将自变量与函数值的全部对应值都列出来,且难以看出规律.【例5】一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的数量关系如下表:所售豆子数量x(千克)00.511.522.533.54售价y(元)012345678(1)上表反映的变量是_____和____,_______是自变量,________是因变量,_____随_____的变化而变化,_____是______的函数.(2)若出售2.5千克豆子,售价应为_____元.(3)根据你的预测,出售_____千克豆子,可得售价21元(4)请写出售价与所售豆子数量的函数关系式________________.【例6】按照我国的税法规定,个人所得税的缴纳方法是:月收入不超过3500元,免缴个人所得税;超过3500元不超过5000元,超出部分需缴纳5%的个人所得税;例如下表:月收入(元)30003200360041004500月缴付个人所得税(元)0053050试写出月收入在3500元到5000元之间的个人缴纳的所得税(元)与月收入(元)之间的函数解析式,并求出月收入为4800元的职工每月需缴纳的个人所得税.(为正整数)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com模块三:图像法1、图像法:用图像来表示一个变量与另一个变量之间函数关系的方法;函数与自变量的对应关系、函数的变化情况及趋势能够很直观地显示出来,但从图像上找自变量与函数的对应值一般只能是近似的,且只能反映出变量间关系的一部分而不是全体.2、三种表示法的相互联系与转化:由函数的解析式画函数的图像,一般分为“列表、描点、连线”三个步骤,通常称作描点作图法;同样,函数图像中点的坐标或表格中自变量与函数的对应值,也是函数解析式所表示的方程的一个解.【例7】已知A城与B城相距200千米,一列火车以每小时60千米的速度从A城驶向B城,求:(1)火车与B城的距离S(千米)与行驶的时间t(小时)的函数关系式;(2)t(小时)的取值范围;(3)画出函数的图象.【例8】如图是甲、乙两人的行程函数图,根据图像回答:(1)谁走的快?(2)求甲、乙两个函数解析式,并写出自变量的取值范围.(3)当时,甲、乙两人行程差多少?jÒÒ¼×0s£¨Ç§Ã×£©t£¨Ð¡Ê±£©32110515小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【例9】如图,在甲、乙两位同学进行200米跑步比赛中,路程(米)关于时间t(秒)的函数关系式的图像分别为拆线OAB和线段OC,下列判断正确的是()A、甲先到达终点B、乙的速度随着时间的增大而增大C、出发后30秒,乙追上甲D、在比赛全程中,甲始终比乙跑得快一、单选题1.(2022春华育中学月考)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是...