间隔发车问题(一)解决相遇问题的主要核心公式:速度和×相遇时间=相遇距离相遇距离÷相遇时间=速度和相遇距离÷速度和=相遇时间(二)解决追及问题的核心公式:速度差×追及时间=追及距离追及距离÷追及时间=速度差追及距离÷速度差=追及时间.(三)解决流水行船问题的核心公式:顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2(四)解决过桥问题的核心公式:过桥问题:路程=桥长+车长路程÷速度=时间1.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行。每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车。已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟。2.某人沿公路匀速行走,他发现公路上的汽车每隔20分就有一辆超过他,每隔12分…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………试卷第2页,共3页就有一辆和他相遇.已知公共汽车发车时间间隔相同.运行的速度也相同,问公共汽车每隔多少分发一辆?3.某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?4.甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?5.电车发车站每隔固定的时间发出一辆电车。小王骑自行车每隔14分钟就被一辆后面开来的电车追上;如果小王车速提高20%,则每隔15分钟就被一辆后面开来的电车追上,那么相邻两辆电车的发车时间相差多少分钟?6.小乐步行去学校的路上注意到每隔4分钟就遇到一辆迎面开来的公交车,到了学校小乐发现自己忘记把一件重要的东西带来了,只好借了同学的自行车以原来步行三倍的速度回家,这时小乐发现每隔12分钟有一辆公交车从后面超过他,如果小乐步行、骑车以及公交车的速度都是匀速的话,那么公交车站发车的时间间隔到底为多少?7.从电车总站每隔一定时间开出一辆电车。甲与乙两人在一条街上反方向步行。甲沿电车发车方向每分钟步行米,每隔分钟有一辆电车从后方超过自己;乙每分钟步行米,每隔分遇上迎面开来的一辆电车。那么电车总站每隔多少分钟开出一辆电车?8.甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?9.小峰骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,于是只好坐出租车去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果这三种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?10.A、B是公共汽车的两个车站,从A站到B站是上坡路。每天上午8点到11点从A、B两站每隔30分同时相向发出一辆公共汽车。已知从A站到B站单程需105分,从B站到A站单程需80分。问:(1)8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………试卷第4页,共3页(2)从A站发车的司机最少能看到几辆从B站开来的汽车?11.从电车总站每隔...