必刷大题12数列的综合问题第六章数列1234561.(2023·仁模怀拟)在增的等比列递数{an}中,前n和项为Sn,S2S2+S4=15,a1=1.(1)求列数{an}的通公式;项123456由S2S2+S4=15,得S4=4S2,等比列设数{an}的公比为q,所以a3+a4=3(a1+a2),即(a1+a2)q2=3(a1+a2),所以q2=3,因等比列为数{an}增,所以递q=3,所以an=a1qn-1=.123n123456(2)若bn=log3a2n-1,求列数{bn}的前n和项Tn.故Tn=0+1+2+…+n-1=nn-12.由(1)可得a2n-1=3n-1,所以bn=log3a2n-1=n-1,2.(2022·坊模潍拟)已知等比列数{an}的前n和项为Sn,且a1=2,S3=a3+6.(1)求列数{an}的通公式;项123456列设数{an}的公比为q,由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以an=2n.(2)设bn=log2an,求列数{anbn}的前n和项Tn.123456由(1)可得bn=log2an=n,所以anbn=n·2n,Tn=1×2+2×22+3×23+…+n×2n,2Tn=1×22+2×23+…+(n-1)2n+n·2n+1,所以-Tn=2+22+…+2n-n·2n+1=21-2n1-2-n·2n+1=2n+1-2-n·2n+1,所以Tn=(n-1)2n+1+2.3.已知等差列数{an}和等比列数{bn}足满a1=2,b2=4,an=2log2bn,n∈N*.(1)求列数{an},{bn}的通公式;项123456123456等差列设数{an}的公差为d,因为b2=4,所以a2=2log2b2=4,所以d=a2-a1=2,所以an=2+(n-1)×2=2n.又an=2log2bn,即2n=2log2bn,所以n=log2bn,所以bn=2n.123456(2)列设数{an}中不在列数{bn}中的按小到大的序成列项从顺构数{cn},列记数{cn}的前n和项为Sn,求S100.123456由(1)得bn=2n=2·2n-1=a2n-1,即bn是列数{an}中的第2n-1项.列设数{an}的前n和项为Pn,列数{bn}的前n和项为Qn,因为b7=a26=a64,b8=a27=a128,所以列数{cn}的前100是由列项数{an}的前107去掉列项数{bn}的前7后成的,项构所以S100=P107-Q7=107×2+2142-2-281-2=11302.4.(2023·州模荆拟)正列设项数{an}的前n和项为Sn,a1=1,且足满________.出下列三件:给个条①a3=4,2lgan=lgan-1+lgan+1(n≥2);②Sn=man-1(m∈R);③2a1+3a2+4a3+…+(n+1)an=kn·2n(k∈R).其中任一目充完整,求解以下请从选个将题补并问题.注:如果多件分解答,按第一解答分选择个条别个计.(1)求列数{an}的通公式;项123456123456整理得a2n=an-1·an+1,故正列项数{an}等比列,为数件选条①,时a3=4,2lgan=lgan-1+lgan+1(n≥2),由于a1=1,a3=4,故公比q2=a3a1=4,解得q=2,故an=a1qn-1=2n-1.件选条②,时Sn=man-1(m∈R),当n=1,整理得时a1=ma1-1,解得m=2,故Sn=2an-1,(a)当n≥2,时Sn-1=2an-1-1,(b)123456(a)-(b)得an=2an-2an-1,整理得anan-1=2(常数),所以列数{an}是以1首,为项2公比的等比列,为数所以an=2n-1.件选条③,时2a1+3a2+4a3+…+(n+1)an=kn·2n(k∈R),当n=1,整理得时2a1=k·21,解得k=1,故2a1+3a2+4a3+…+(n+1)an=n·2n(k∈R),(a)当n≥2,时2a1+3a2+4a3+…+nan-1=(n-1)·2n-1,(b)()(b)得21(首符合通项项)123456(2)若bn=1n+1log2an+1,且列数{bn}的前n和项Tn=99100,求n的值.由(1)得bn=1n+1log2an+1=1nn+1=1n-1n+1,所以Tn=1-12+12-13+…+1n-1n+1=1-1n+1=99100,解得n=99.1234565.(2023·南模济拟)已知{an}是增的等差列,递数a1+a5=18,a1,a3,a9分等比列别为数{bn}的前三项.(1)求列数{an}和{bn}的通公式;项由已知得a1+a1+4d=18,a1+2d2=a1a1+8d,解得a1=3,d=3,所以an=3n;列设数{an}的公差为d(d>0),列数{bn}的公比为q,所以b1=a1=3,q=a3a1=3,所以bn=3n.123456(2)去列删数{bn}中的第ai项(其中i=1,2,3,…),剩余的按将项从小到大的序排成新列顺数{cn},求列数{cn}的前n和项Sn.123456由意可知新列题数{cn}为b1,b2,b4,b5,…,则当n偶,为数时Sn=142532322nnbbbbbb--1+++++++2223(127)3(127)127127nn+26(271)13n==,123456则当n奇,为数时1322b...