小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com微考点6-2圆锥曲线中的弦长面积类问题(三大题型)直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积,处理方法:①一般方法:S=12|AB|d(其中|AB|为弦长,d为顶点到直线AB的距离),设直线为斜截式y=kx+m.进一步,S=12|AB|d=12√1+k2√(x1+x2)2−4x1x1|kx0−y0+m|√1+k2②特殊方法:拆分法,可以将三角形沿着x轴或者y轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在x轴或者y轴上,此时,便于找到两个三角形的底边长.③坐标法:设A(x1,y1),B(x2,y2),则SΔAOB=12|x1y2−x2y1|④面积比的转化:三角形的面积比及其转化有一定的技巧性,一般的思路就是将面积比转化为可以利用设线法完成的线段之比或者设点法解决的坐标形式,通常有以下类型:1.两个三角形同底,则面积之比转化为高之比,进一步转化为点到直线距离之比2.两个三角形等高,则面积之比转化为底之比,进一步转化为长度(弦长之比)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.利用三角形面积计算的正弦形式,若等角转化为腰长之比4.面积的割补和转化⑤四边形的面积计算在高考中,四边形一般都比较特殊,常见的情况是四边形的两对角线相互垂直,此时我们借助棱形面积公式,四边形面积等于两对角线长度乘积的一半;当然也有一些其他的情况,此时可以拆分成两个三角形,借助三角形面积公式求解.⑥注意某条边过定点的三角形和四边形当三角形或者四边形某条边过定点时,我们就可以把三角形,四边形某个定顶点和该定点为边,这样就转化成定底边的情形,最终可以简化运算.当然,你需要把握住一些常见的定点结论,才能察觉出问题的关键.题型一:利用弦长公式距离公式解决弦长问题【精选例题】【例1】已知椭圆,,分别为左右焦点,点,在椭圆E上.(1)求椭圆E的离心率;(2)过左焦点且不垂直于坐标轴的直线l交椭圆E于A,B两点,若的中点为M,O为原点,直线交直线于点N,求取最大值时直线l的方程.【例2】已知圆:和圆:,以动点为圆心的圆与其中一个圆外切,与另一个圆内切,记动点的轨迹为.(1)求轨迹的方程;(2)若斜率为的直线交轨迹于,两点,求的长度的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【跟踪训练】1.已知椭圆C:,圆O:,若圆O过椭圆C的左顶点及右焦点.(1)求椭圆C的方程;(2)过点作两条相互垂直的直线,,分别与椭圆相交于点A,B,D,E,试求的取值范围.2.已知椭圆:的两焦点,,且椭圆过.(1)求椭圆的标准方程;(2)过点作不与坐标轴垂直的直线交椭圆于,两点,线段的垂直平分线与轴负半轴交于点,若点的纵坐标的最大值为,求的取值范围.题型二:利用弦长公式距离公式解决三角形面积类问题【精选例题】【例1】已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“蒙日圆”,椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若直线与椭圆交于、两点,与其“蒙日圆”交于、两点,当时,求面积的最大值.【例2】已知椭圆的左、右焦点分别是,,上顶点为A,椭圆的焦距等于椭圆的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com长半轴长,且的面积为.(1)求椭圆的标准方程;(2)若B,C是椭圆上不同的两点,且直线AB和直线AC的斜率之积为,求面积的最大值.【例3】动点满足方程.(1)求动点P的轨迹的方程;(2)设过原点的直线l与轨迹相交于两点,设,连接并分别延长交轨迹于点,记的面积分别是,求的取值范围.【例4】已知椭圆C的中心在原点,一个焦点为,且长轴长是短轴长的倍.(1)求椭圆C的标准方程;(2)设过焦点F的直线l与椭圆C交于A、B两点,是椭圆的另一个焦点,若内切圆的半径,求直线l的方程.【跟踪训练】1.如图,已知椭圆的焦点为,,离心率为,椭圆的上、下顶点分别为,右顶点为,直线过点且垂直于轴,点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆的标准方程;(2)判定(为坐标原点)与的面积之和是否为定值?若是,请求...