2024年新高考数学复习资料第28讲 三角恒等变换(2)(原卷版).docx本文件免费下载 【共7页】

2024年新高考数学复习资料第28讲 三角恒等变换(2)(原卷版).docx
2024年新高考数学复习资料第28讲 三角恒等变换(2)(原卷版).docx
2024年新高考数学复习资料第28讲 三角恒等变换(2)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第28讲三角恒等变换(2)知识梳理1.在三角函数式的化简、求值、证明等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数,如遇到正切、正弦、余弦并存的情况,一般要切化弦.2.要注意对“1”的代换:如1=sin2α+cos2α=tan,还有1+cosα=2cos2,1-cosα=2sin2.3.对于sinαcosα与sinβ±cosα同时存在的试题,可通过换元完成:如设t=sinα±cosα,则sinαcosα=±.4.要注意角的变换,熟悉角的拆拼技巧,理解倍角与半角是相对的,如2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,是的半角,是的倍角等.5.用三角方法求三角函数的最值常见的函数形式:(1)y=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.则-≤y≤.(2)y=asin2x+bsinxcosx+ccos2x可先降次,整理转化为上一种形式.(3)y=(或y=)可转化为只有分母含sinx或cosx的函数式sinx=f(y)的形式,由正、余弦函数的有界性求解.6.用代数方法求三角函数的最值常见的函数形式:(1)y=asin2x+bcosx+c可转化为关于cosx的二次函数式.(2)y=asinx+(a,b,c>0),令sinx=t,则转化为求y=at+(-1≤t≤1)的最值,一般可用基本不等式或单调性求解.1、【2023年新高考1卷】已知,则().A.B.C.D.2、【2021年新高考1卷】若,则()A.B.C.D.3、【2018年新课标1卷文科】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4、【2018年新课标1卷文科】已知函数,则A.的最小正周期为,最大值为B.的最小正周期为,最大值为C.的最小正周期为,最大值为D.的最小正周期为,最大值为1、若tanα=,tan(α+β)=,则tanβ=.2、已知锐角α,β满足sinα=,cosβ=,则α+β等于()A.B.或C.D.2kπ+(k∈Z)3、已知¿,ΔAEB,则[的值为_______.4、设为锐角,若,则的值为.5、(2022年福建诏安县模拟试卷)已知,,则的值为()A.B.C.D.考向一变角的运用例1、已知α为锐角,若cos=,求sin的值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式1、(1)(2022·江苏·南京外国语学校模拟预测)已知,若,则()A.B.C.D.(2)(2022·广东湛江·二模)若,,则___________.变式2、(1)(2021·山东烟台市·高三二模)已知1tan2,1tan3,则tan2的值为______.(2)已知α,β∈,sin(α+β)=-,sin=,则cos=________.方法总结:所谓边角就是用已知角表示所求的角,要重点把握住它们之间的关系,然后运用有关公式进行求解。考向二求角例2、已知锐角α,β满足sinα=,cosβ=,求α+β的值.变式1、已知α,β为锐角,且sinα=,cosβ=,求α-β的值.变式2、若sin2α=,sin(β-α)=,且α∈,β∈,则α+β的值为__________.变式3、(1)(2022·湖北·恩施土家族苗族高中高三期末)已知且,则=()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.或(2)(2022·河北张家口·高三期末)(多选题)已知,,则()A.B.C.D.方法总结:求角的步棸:1、求角的某一个三角函数值,(结合具体情况确定是正弦、余弦还是正切)2、确定角的范围(范围尽量缩小)3、根据范围和值确定角的大小。考向三公式的综合运用例3、已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈.(1)当a=,θ=时,求f(x)在区间[0,π]上的最大值与最小值;(2)若f=0,f(π)=1,求a,θ的值.变式1、(1)函数f(x)=sin(x+φ)-2sinφcosx的最大值为;(2)函数f(x)=sin-2sin2x的最小正周期是.变式2、(2022·山东青岛·高三期末)(多选题)已知函数,则下列结论正确的是()A.B.是图象的一条对称轴小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.的最小正周期为D.将的图象向左平移个单位后,得到的图象关于原点对称方法总结:降幂公式是解决含有cos2x、sin2x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2013年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
高中2023《微专题·小练习》·数学·新教材·XL-3专练 50.docx
高中2023《微专题·小练习》·数学·新教材·XL-3专练 50.docx
免费
0下载
1990年广东高考理科数学真题及答案.doc
1990年广东高考理科数学真题及答案.doc
免费
19下载
高中数学(必修第二册)(BSD版)课时作业(word)  课时作业47.doc
高中数学(必修第二册)(BSD版)课时作业(word) 课时作业47.doc
免费
4下载
【高考数学】备战2024年(新高考专用)专题15 排列组合(6大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题15 排列组合(6大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2005年陕西高考理科数学真题及答案.doc
2005年陕西高考理科数学真题及答案.doc
免费
7下载
1994年高考数学真题(文科)(天津自主命题).doc
1994年高考数学真题(文科)(天津自主命题).doc
免费
12下载
2003年四川高考理科数学真题及答案.doc
2003年四川高考理科数学真题及答案.doc
免费
16下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 62.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 62.docx
免费
23下载
高中数学高考数学10大专题技巧--专题26 极值点偏移之其他型不等式的证明(学生版).docx.doc
高中数学高考数学10大专题技巧--专题26 极值点偏移之其他型不等式的证明(学生版).docx.doc
免费
0下载
2000年高考数学真题(理科)(天津自主命题).doc
2000年高考数学真题(理科)(天津自主命题).doc
免费
17下载
2024年新高考数学复习资料【专项精练】第05课 函数的单调性与最值-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第05课 函数的单调性与最值-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练83.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练83.docx
免费
12下载
高中2024版《微专题》·数学(文)·统考版专练 19.docx
高中2024版《微专题》·数学(文)·统考版专练 19.docx
免费
0下载
高中数学高考数学10大专题技巧--专题五 平面向量的模(教师版).docx
高中数学高考数学10大专题技巧--专题五 平面向量的模(教师版).docx
免费
0下载
2024年新高考数学复习资料大题01 解三角形(精选30题)(原卷版).docx
2024年新高考数学复习资料大题01 解三角形(精选30题)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题11 双曲线中的参数及范围问题(解析版).docx
2024年新高考数学复习资料专题11 双曲线中的参数及范围问题(解析版).docx
免费
0下载
2014年辽宁省高考数学试卷(理科)往年高考真题.doc
2014年辽宁省高考数学试卷(理科)往年高考真题.doc
免费
0下载
1993年天津高考理科数学真题及答案.doc
1993年天津高考理科数学真题及答案.doc
免费
3下载
2024年新高考数学复习资料专题02 不等式与复数(6大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料专题02 不等式与复数(6大核心考点)(讲义)(原卷版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群